The microscopic structure of low-permeability tight reservoirs is complicated due to diagenetic processes that impact the pore-fluid distribution and hydraulic properties of tight rocks. As part of an ongoing study of carbon dioxide-enhanced oil and gas recovery (CO2-EOR/EGR) and CO2 sequestration, this research article adopts an integrated approach to investigate the contribution of the micropore system in pore-fluid distribution in tight sandstones. A new dimensionless number, termed the microscopic confinement index (MCI), was established to select the right candidate for microscopic CO2 injection in tight formations. Storativity and containment indices were essential for MCI estimation. A set of experiments, including routine core analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR), was performed on three tight sandstone rock samples, namely Bandera, Kentucky, and Scioto. Results indicate that the presence of fibrous illite acting as pore bridging in Bandera and Kentucky sandstone samples reduced the micropore-throat proportion (MTMR), leading to a significant drop in the micropore system confinement in Kentucky and Bandera sandstone samples of 1.03 and 0.56, respectively. Pore-filling kaolinite booklets reduced the micropore storativity index (MSI) to 0.48 in Kentucky and 0.38 in Bandera. On the other hand, the absence of fibrous illite and kaolinite booklets in Scioto sandstone led to the highest micropore system capability of 1.44 MTMR and 0.5 MSI to store and confine fluids. Therefore, Scioto sandstone is the best candidate for CO2 injection and storage among the tested samples of 0.72 MCI.
Macro-, meso-, micro-pore systems combined with clay content are critical for fluid flow behavior in tight sandstone formations. This study investigates the impact of clay mineralogy on pore systems in tight rocks. Three outcrop samples were selected based on their comparative petrophysical parameters (Bandera, Kentucky, and Scioto). Our experiments carried out to study the impact of clay content on micro-pore systems in tight sandstone reservoirs involve the following techniques: Routine core analysis (RCA), to estimate the main petrophysical parameters such as porosity and permeability, X-ray diffraction (XRD), and scanning electron microscopy (SEM) to assess mineralogy and elemental composition, Mercury Injection Capillary Pressure (MICP), Nuclear Magnetic Resonance (NMR), and Micro-Computed Tomography (Micro-CT) to analyze pore size distributions. Clay structure results show the presence of booklets of kaolinite and platelets to filamentous shapes of illite. The Scioto sample exhibits a micro-pore system with an average pore body size of 12.6±0.6 μm and an average pore throat size of 0.25±0.19 μm. In Bandera and Kentucky samples illite shows pore-bridging clay filling with an average mineral size of around 0.25±0.03 μm, which reduces the micro-pore throat system sizes. In addition, pore-filling kaolinite minerals with a diameter of 5.1±0.21 μm, also reduce the micro-pore body sizes. This study qualifies and quantifies the relationship of clay content with primary petrophysical properties of three tight sandstones. The results help to advance procedures for planning oil recovery and CO2 sequestration in tight sandstone reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.