Background Chronic kidney disease (CKD) and immunosuppression, such as in renal transplantation (RT), stand as one of the established potential risk factors for severe coronavirus disease 2019 (COVID-19). Case morbidity and mortality rates for any type of infection have always been much higher in CKD, haemodialysis (HD) and RT patients than in the general population. A large study comparing COVID-19 outcome in moderate to advanced CKD (Stages 3–5), HD and RT patients with a control group of patients is still lacking. Methods We conducted a multicentre, retrospective, observational study, involving hospitalized adult patients with COVID-19 from 47 centres in Turkey. Patients with CKD Stages 3–5, chronic HD and RT were compared with patients who had COVID-19 but no kidney disease. Demographics, comorbidities, medications, laboratory tests, COVID-19 treatments and outcome [in-hospital mortality and combined in-hospital outcome mortality or admission to the intensive care unit (ICU)] were compared. Results A total of 1210 patients were included [median age, 61 (quartile 1–quartile 3 48–71) years, female 551 (45.5%)] composed of four groups: control (n = 450), HD (n = 390), RT (n = 81) and CKD (n = 289). The ICU admission rate was 266/1210 (22.0%). A total of 172/1210 (14.2%) patients died. The ICU admission and in-hospital mortality rates in the CKD group [114/289 (39.4%); 95% confidence interval (CI) 33.9–45.2; and 82/289 (28.4%); 95% CI 23.9–34.5)] were significantly higher than the other groups: HD = 99/390 (25.4%; 95% CI 21.3–29.9; P < 0.001) and 63/390 (16.2%; 95% CI 13.0–20.4; P < 0.001); RT = 17/81 (21.0%; 95% CI 13.2–30.8; P = 0.002) and 9/81 (11.1%; 95% CI 5.7–19.5; P = 0.001); and control = 36/450 (8.0%; 95% CI 5.8–10.8; P < 0.001) and 18/450 (4%; 95% CI 2.5–6.2; P < 0.001). Adjusted mortality and adjusted combined outcomes in CKD group and HD groups were significantly higher than the control group [hazard ratio (HR) (95% CI) CKD: 2.88 (1.52–5.44); P = 0.001; 2.44 (1.35–4.40); P = 0.003; HD: 2.32 (1.21–4.46); P = 0.011; 2.25 (1.23–4.12); P = 0.008), respectively], but these were not significantly different in the RT from in the control group [HR (95% CI) 1.89 (0.76–4.72); P = 0.169; 1.87 (0.81–4.28); P = 0.138, respectively]. Conclusions Hospitalized COVID-19 patients with CKDs, including Stages 3–5 CKD, HD and RT, have significantly higher mortality than patients without kidney disease. Stages 3–5 CKD patients have an in-hospital mortality rate as much as HD patients, which may be in part because of similar age and comorbidity burden. We were unable to assess if RT patients were or were not at increased risk for in-hospital mortality because of the relatively small sample size of the RT patients in this study.
The effects of high-flux dialysis and ultrapure dialysate on survival of hemodialysis patients are incompletely understood. We conducted a randomized controlled trial to investigate the effects of both membrane permeability and dialysate purity on cardiovascular outcomes. We randomly assigned 704 patients on three times per week hemodialysis to either high-or low-flux dialyzers and either ultrapure or standard dialysate using a two-by-two factorial design. The primary outcome was a composite of fatal and nonfatal cardiovascular events during a minimum 3 years follow-up. We did not detect statistically significant differences in the primary outcome between high-and low-flux (HR=0.73, 95% CI=0.49 to 1.08, P=0.12) and between ultrapure and standard dialysate (HR=0.90, 95% CI=0.61 to 1.32, P=0.60). Posthoc analyses suggested that cardiovascular event-free survival was significantly better in the high-flux group compared with the low-flux group for the subgroup with arteriovenous fistulas, which constituted 82% of the study population (adjusted HR=0.61, 95% CI=0.38 to 0.97, P=0.03). Furthermore, high-flux dialysis associated with a lower risk for cardiovascular events among diabetic subjects (adjusted HR=0.49, 95% CI=0.25 to 0.94, P=0.03), and ultrapure dialysate associated with a lower risk for cardiovascular events among subjects with more than 3 years of dialysis (adjusted HR=0.55, 95% CI=0.31 to 0.97, P=0.04). In conclusion, this trial did not detect a difference in cardiovascular event-free survival between flux and dialysate groups. Posthoc analyses suggest that high-flux hemodialysis may benefit patients with an arteriovenous fistula and patients with diabetes and that ultrapure dialysate may benefit patients with longer dialysis vintage.
Rationale and Objectives: The aim of this study was to compare the findings found in thorax computed tomography (CT), which is increasingly used in the diagnosis of the important public health problem of coronavirus disease (COVID-19), and the findings of magnetic resonance imaging (MRI) as an important diagnostic alternative. Materials and Methods: Thirty-two patients diagnosed with COVID-19 who underwent thorax CT for COVID pneumonia and MRI for any reason within 24 hours after CT were included in the study. The number of lobes affected, number of lobes containing ground-glass opacities and consolidation, number of nodules, distribution of lesions (central, peripheral, or diffuse), lobes with centrilobular nodular pattern, and the presence of pleural effusion were recorded separately for both imaging methods. Results: Seventeen of the patients were female (53%) and 15 were male (47%). The mean age of the patients was 60.5 (range, 20À85) years. A total of 31 patients (96%) had signs of pneumonia on CT. The most common finding in CT was ground-glass opacities in 29 patients (90.6%), followed by consolidation in 14 patients (43.75%). Both consolidation and ground-glass opacities were also observed in MRI in all of these patients. Nodules were detected in 12 patients (37.5%) on CT and 11 patients (34.4%) on MRI. The sensitivity and specificity of MRI in nodule detection were calculated as 91.67% and 100%, respectively. Conclusion: Although thorax CT is widely used in the imaging of COVID-19 infection, due to its advantages, MRI can also be used as an alternative diagnostic tool.
Background We aimed to present the demographic characteristics, clinical presentation, and outcomes of our multicenter cohort of adult KTx recipients with COVID-19. Methods We conducted a multicenter, retrospective study using data of patients hospitalized for COVID-19 collected from 34 centers in Turkey. Demographic characteristics, clinical findings, laboratory parameters (hemogram, CRP, AST, ALT, LDH, and ferritin) at admission and follow-up, and treatment strategies were reviewed. Predictors of poor clinical outcomes were analyzed. The primary outcomes were in-hospital mortality and the need for ICU admission. The secondary outcome was composite in-hospital mortality and/or ICU admission. Results One hundred nine patients (male/female: 63/46, mean age: 48.4 ± 12.4 years) were included in the study. Acute kidney injury (AKI) developed in 46 (42.2%) patients, and 4 (3.7%) of the patients required renal replacement therapy (RRT). A total of 22 (20.2%) patients were admitted in the ICU, and 19 (17.4%) patients required invasive mechanical ventilation. 14 (12.8%) of the patients died. Patients who were admitted in the ICU were significantly older (age over 60 years) (38.1% vs 14.9%, p = 0.016). 23 (21.1%) patients reached to composite outcome and these patients were significantly older (age over 60 years) (39.1% vs. 13.9%; p = 0.004), and had lower serum albumin (3.4 g/dl [2.9–3.8] vs. 3.8 g/dl [3.5–4.1], p = 0.002), higher serum ferritin (679 μg/L [184–2260] vs. 331 μg/L [128–839], p = 0.048), and lower lymphocyte counts (700/μl [460–950] vs. 860 /μl [545–1385], p = 0.018). Multivariable analysis identified presence of ischemic heart disease and initial serum creatinine levels as independent risk factors for mortality, whereas age over 60 years and initial serum creatinine levels were independently associated with ICU admission. On analysis for predicting secondary outcome, age above 60 and initial lymphocyte count were found to be independent variables in multivariable analysis. Conclusion Over the age of 60, ischemic heart disease, lymphopenia, poor graft function were independent risk factors for severe COVID-19 in this patient group. Whereas presence of ischemic heart disease and poor graft function were independently associated with mortality.
Background Acute kidney injury (AKI) is common in coronavirus disease-2019 (COVID-19) and the severity of AKI is linked to adverse outcomes. In this study, we investigated the factors associated with in-hospital outcomes among hospitalized patients with COVID-19 and AKI. Methods In this multicenter retrospective observational study, we evaluated the characteristics and in-hospital renal and patient outcomes of 578 patients with confirmed COVID-19 and AKI. Data were collected from 34 hospitals in Turkey from March 11 to June 30, 2020. AKI definition and staging were based on the Kidney Disease Improving Global Outcomes criteria. Patients with end-stage kidney disease or with a kidney transplant were excluded. Renal outcomes were identified only in discharged patients. Results The median age of the patients was 69 years, and 60.9% were males. The most frequent comorbid conditions were hypertension (70.5%), diabetes mellitus (43.8%), and chronic kidney disease (CKD) (37.6%). The proportions of AKI stages 1, 2, and 3 were 54.0%, 24.7%, and 21.3%, respectively. 291 patients (50.3%) were admitted to the intensive care unit. Renal improvement was complete in 81.7% and partial in 17.2% of the patients who were discharged. Renal outcomes were worse in patients with AKI stage 3 or baseline CKD. The overall in-hospital mortality in patients with AKI was 38.9%. In-hospital mortality rate was not different in patients with preexisting non-dialysis CKD compared to patients without CKD (34.4 versus 34.0%, p = 0.924). By multivariate Cox regression analysis, age (hazard ratio [HR] [95% confidence interval (95%CI)]: 1.01 [1.0–1.03], p = 0.035], male gender (HR [95%CI]: 1.47 [1.04–2.09], p = 0.029), diabetes mellitus (HR [95%CI]: 1.51 [1.06–2.17], p = 0.022) and cerebrovascular disease (HR [95%CI]: 1.82 [1.08–3.07], p = 0.023), serum lactate dehydrogenase (greater than two-fold increase) (HR [95%CI]: 1.55 [1.05–2.30], p = 0.027) and AKI stage 2 (HR [95%CI]: 1.98 [1.25–3.14], p = 0.003) and stage 3 (HR [95%CI]: 2.25 [1.44–3.51], p = 0.0001) were independent predictors of in-hospital mortality. Conclusions Advanced-stage AKI is associated with extremely high mortality among hospitalized COVID-19 patients. Age, male gender, comorbidities, which are risk factors for mortality in patients with COVID-19 in the general population, are also related to in-hospital mortality in patients with AKI. However, preexisting non-dialysis CKD did not increase in-hospital mortality rate among AKI patients. Renal problems continue in a significant portion of the patients who were discharged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.