Since the 1980s, satellite-borne synthetic aperture radar (SAR) has been investigated for early warning and monitoring of marine oil spills to permit effective satellite surveillance in the marine environment.Automated detection of oil spills from satellite SAR intensity imagery consists of three steps: 1) Detection of dark spots; 2) Extraction of features from the detected dark spots; and 3) Classification of the dark spots into oil spills and look-alikes. However, marine oil spill detection is a very difficult and challenging task. Open questions exist in each of the three stages.In this thesis, the focus is on the first stage-dark spot detection. An efficient and effective dark spot detection method is critical and fundamental for developing an automated oil spill detection system. A novel method for this task is presented. The key to the method is utilizing the spatial density feature to enhance the separability of dark spots and the background. After an adaptive intensity thresholding, a spatial density thresholding is further
GPS applications such as Precise Point Positioning (PPP) require the availability of precise ephemeris at high rate. To support these applications, several institutions such as the International GNSS Service (IGS) have developed precise orbital service. Unfortunately, however, the data rate of such precise orbits is usually limited to 15 minutes. To overcome this problem, a number of orbital interpolation methods are proposed. This paper examines the performance of four interpolation methods for IGS precise GPS orbits, namely Lagrange, Newton Divided Difference, Cubic Spline and Trigonometric interpolation. In addition, the paper discusses a new approach, which utilizes the residuals between the broadcast and precise ephemeris to generate a high density precise ephemeris. It is shown that the new approach produces better results than previously reported orbital interpolation accuracy.K E Y W O R D S 1. Precise Point Positioning.2. GPS Orbit. 3. Interpolation.
Precise real-time GPS orbit at a high rate is required for a number of applications, including real-time Precise Point Positioning (PPP), long range RTK and weather forecasts. To support these applications, the International GNSS Service (IGS) has developed a precise orbital service. At present, users may take advantage of the predicted part of the IGS ultra-rapid orbit for real-time and near real-time applications. Unfortunately, however the data rate of such precise orbits is usually limited to 15 minutes. In addition, the precision of the predicted part of the IGS ultrarapid orbit is limited to about 10 cm. for the 24-hour predicted part, which may not be sufficient for the above applications, This research proposes algorithms for interpolation and prediction methods that are intended to reduce the effect of such limitations. This research examines the performance of four interpolation methods for IGS precise GPS orbits, nameley Lagrange, Newton Divided Difference, Bernese Polynomial, Cubic Spline and Trigonometric Interpolation. In addition, a comparison between this research and earlier studies were conducted. A new approach that utilizes the residuals between the broadcast and precise ephemeris to generate a high-density precise ephemeris is also introduced in this research. A three-step neural network-based model is then developed in this research to generate a 6-hour predicted orbital arc. First, an initial predicted orbit is generated by extrapolating a concentrated group of previous precise ephemeris for 5 days. GPS observations for 35 globally distributed tracking stations, corresponding to the 24-hour period preceding the predicted part, are then utilized within the Bernese software to further enhance the predicted orbit. FInally, the predicted orbit is refined by implementing a modular - three-layer feed-forward back-propagation neural network. A comparison is made between our predicted orbit and the IGS ultra-rapid orbit to verify the efficiency of the newly developed neural network-based model. It is shown that the newly developed neural network-based model improved the orbit prediction by 47%, 22% and 37% for three randomly selected satellites from Blocks IIA, IIR and IIR-M respectively.
Precise real-time GPS orbit at a high rate is required for a number of applications, including real-time Precise Point Positioning (PPP), long range RTK and weather forecasts. To support these applications, the International GNSS Service (IGS) has developed a precise orbital service. At present, users may take advantage of the predicted part of the IGS ultra-rapid orbit for real-time and near real-time applications. Unfortunately, however the data rate of such precise orbits is usually limited to 15 minutes. In addition, the precision of the predicted part of the IGS ultrarapid orbit is limited to about 10 cm. for the 24-hour predicted part, which may not be sufficient for the above applications, This research proposes algorithms for interpolation and prediction methods that are intended to reduce the effect of such limitations. This research examines the performance of four interpolation methods for IGS precise GPS orbits, nameley Lagrange, Newton Divided Difference, Bernese Polynomial, Cubic Spline and Trigonometric Interpolation. In addition, a comparison between this research and earlier studies were conducted. A new approach that utilizes the residuals between the broadcast and precise ephemeris to generate a high-density precise ephemeris is also introduced in this research. A three-step neural network-based model is then developed in this research to generate a 6-hour predicted orbital arc. First, an initial predicted orbit is generated by extrapolating a concentrated group of previous precise ephemeris for 5 days. GPS observations for 35 globally distributed tracking stations, corresponding to the 24-hour period preceding the predicted part, are then utilized within the Bernese software to further enhance the predicted orbit. FInally, the predicted orbit is refined by implementing a modular - three-layer feed-forward back-propagation neural network. A comparison is made between our predicted orbit and the IGS ultra-rapid orbit to verify the efficiency of the newly developed neural network-based model. It is shown that the newly developed neural network-based model improved the orbit prediction by 47%, 22% and 37% for three randomly selected satellites from Blocks IIA, IIR and IIR-M respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.