Limited access to electricity and endemic power shortages are huge problems in West African countries, as the lack of sufficient power impedes the socio-economic development in the region. Improving access to and reliability of electricity in West Africa will require close cooperation among neighboring countries, and this was one of the aims for the creation of the West African power pool (WAPP). In this study, a sustainable and economically viable pathway to achieve 100% electricity access and 48% renewable energy sources share in the region by the year 2030 set by WAPP was presented by considering environmental, geographical, technical and economic factors. The technologies of both renewable and non-renewable sources are considered in the model development. Simulation analysis was carried out on individual countries within the region and also as a unified synchronous electricity grid network. The most feasible results were discussed in terms of the initial investment cost, total annual cost, electricity production capacities, carbon emissions and renewable energy sources shared using EnergyPLAN computer software. The integration of natural gas (42,000 MW) with the three RES technologies with the following capacities, wind (13,000 MW), PV (13,000 MW) and hydro (29,000 MW), was shown to be the most feasible, suitable and reliable case scenario for meeting the lofty set target as a unified synchronous grid. This will reduce carbon emissions by almost 50%, from 150 to 77.8 Mt per year, and incur a total investment cost and a total annual cost of USD 250.37 billion and USD 14.71 billion, respectively.
IoT has continued to grow bigger since from its inception. Many mobile devices are now available, the internet and its application have only grown bigger and better. As IoT is continually growing, so also is the complexity, as a result issues pertaining routing have also increased. Many researches have been made in attempt to proffer solutions that will either minimize or eliminate these routing issues. Different routing protocols have been designed with different specifications for different applications of the IoT. Also, attempts have been made to implement routing protocols of other types of networks in the IoT.
In this thesis, three WirelessSensor Networks -Adhoc On-Demand Distance Vector, Dynamic Source routing protocol and Optimized Link State routing protocol have been simulated and compared in typical IoT scenarios. Their performance was evaluated using three performance metrics and then they were compared; the performance metrics are Routing Overhead, Average End to End Delay and Throughput. Different numbers of nodes with different percentages of mobile nodes were analyzed. Specifically, number of nodes analyzed were 20, 40, 60 and 70 with the number of mobile nodes 10, 15 and 20 using OPNET while with NS 3 20, 60 and 100 nodes were analyzed. For each of the number of nodes, all the number of mobile nodes were evaluated. The routing protocols were analyzed using the OPNET Simulation Software and NS-3and the environment size for the simulation was 1000m by 1000m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.