The occurrence and biological importance of sialic acid (Sia) and its metabolic enzymes in insects have been studied using Drosophila melanogaster. The most prominent feature of D. melanogaster CMP-Sia synthetase (DmCSS) is its Golgi-localization, contrasted with nuclear localization of vertebrate CSSs. However, it remains unclear if the Golgi-localization is common to other insect CSSs and why it happens. To answer these questions, Aedes aegypti (mosquito) CSS (AaCSS) and Tribolium castaneum (beetle) CSS (TcCSS) were cloned and characterized for their activity and subcellular localization. Our new findings show: (1) AaCSS and TcCSS share a common overall structure with DmCSS in terms of evolutionarily conserved motifs and the absence of the C-terminal domain typical to vertebrate CSSs; (2) when expressed in mammalian and insect cells, AaCSS and TcCSS showed in vivo and in vitro CSS activities, similar to DmCSS. In contrast, when expressed in bacteria, they lacked CSS activity because the N-terminal hydrophobic region appeared to induce protein aggregation; (3) when expressed in Drosophila S2 cells, AaCSS and TcCSS were predominantly localized in the ER, but not in the Golgi. Surprisingly, DmCSS was mainly secreted into the culture medium, although partially detected in Golgi. Consistent with these results, the N-terminal hydrophobic regions of AaCSS and TcCSS functioned as a signal peptide to render them soluble in the ER, while the N-terminus of DmCSS functioned as a membrane-spanning region of type II transmembrane proteins whose cytosolic KLK sequence functioned as an ER export signal. Accordingly, the differential subcellular localization of insect CSSs are distinctively more diverse than previously recognized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.