Minced meat substitution is one of the most common frauds which not only affects consumer health but impacts their lifestyles and religious customs as well. A number of methods have been proposed to overcome these frauds; however, these mostly rely on laboratory measures and are often subject to human error. Therefore, this study proposes novel hyperspectral imaging (400–1000 nm) based non-destructive isos-bestic myoglobin (Mb) spectral features for minced meat classification. A total of 60 minced meat spectral cubes were pre-processed using true-color image formulation to extract regions of interest, which were further normalized using the Savitzky–Golay filtering technique. The proposed pipeline outperformed several state-of-the-art methods by achieving an average accuracy of 88.88%.
The shelf life of bakery products highly depends on the environment and it may get spoiled earlier than its expiry which results in food-borne diseases and may affect human health or may get wasted beforehand. The traditional spoilage detection methods are time-consuming and destructive in nature due to the time taken to get microbiological results. To the best of the author's knowledge, this work presents a novel method to automatically predict the microbial spoilage and detect its spatial location in baked items using Hyperspectral Imaging (HSI) range from 395 − 1000 nm. A spectral preserve fusion technique has been proposed to spatially enhance the HSI images while preserving the spectral information. Furthermore, to automatically detect the spoilage, Principal Component Analysis (PCA) followed by K-means and SVM has been used. The proposed approach can detect the spoilage almost 24 hours before it started appearing or visible to a naked eye with 98.13% accuracy on test data. Furthermore, the trained model has been validated through external dataset and detected the spoilage almost a day before it started appearing visually.
The quality of red chili is characterized based on its color and pungency. Several factors like humidity, temperature, light, and storage conditions affect the characteristic qualities of red chili, thus preservation required several measures. Instead of ensuring these measures, traders are using oil and Sudan dye in red chili to increase the value of an inferior product. Thus, this work presents the feasibility of utilizing a hyperspectral camera for the detection of oil and Sudan dye in red chili. This study describes the important wavelengths (500–700 nm) where different adulteration affects the response of the reflected spectrum. These wavelengths are then utilized for training an Support Vector Machine (SVM) algorithm to detect pure, oil-adulterated, and Sudan dye-adulterated red chili. The classification performance achieves 97% with the reduced dimensionality and 100% with complete validation data. The trained algorithm is further tested on separate data with different adulteration levels in comparison to the training data. Results show that the algorithm successfully classifies pure, oil-adulterated, and Sudan-adulterated red chili with an accuracy of 100%.
Diseases in apple orchards (rot, scab, and blotch) worldwide cause a substantial loss in the agricultural industry. Traditional hand picking methods are subjective to human efforts. Conventional machine learning methods for apple disease classification depend on hand-crafted features that are not robust and are complex. Advanced artificial methods such as Convolutional Neural Networks (CNN’s) have become a promising way for achieving higher accuracy although they need a high volume of samples. This work investigates different Deep CNN (DCNN) applications to apple disease classification using deep generative images to obtain higher accuracy. In order to achieve this, our work progressively modifies a baseline model by using an end-to-end trained DCNN model that has fewer parameters, better recognition accuracy than existing models (i.e., ResNet, SqeezeNet, and MiniVGGNet). We have performed a comparative study with state-of-the-art CNN as well as conventional methods proposed in the literature, and comparative results confirm the superiority of our proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.