Although gas desorption is a known phenomenon, modeling fluid flow in tight gas reservoirs often ignores the governing desorption effect, assuming that viscous transport is the predominant controller, resulting in an erroneous prediction of mass transport and fluid flow calculations. Thus, developing a new model accommodating all the major contributing forces in such a medium is essential. This work introduces a new comprehensive flow model suitable for tight unconventional reservoirs, including viscous, inertia, diffusion, and sorption forces, to account for fluid transport. Based on Langmuir law and Knudsen diffusion effect, three models were generated and compared with different known models using synthetic data. The model was solved and analyzed for different scenario cases, and parametric studies were conducted to evaluate the desorption effect on different reservoir types using MATLAB. Results show that the contribution of the sorption mechanism to the flow increases with the reducing permeability of the medium and lower viscosity of the flowing fluid and an additional pressure drop up to 10 psi was quantified.
A model for single-phase fluid flow in tight UCRs was previously produced by modifying the flow Forchheimer’s equation. The new modification addresses the fluid transport phenomena into three scales incorporating a diffusion term. In this study, a new liner model, numerically solved, has been developed and deployed for a gas huff and puff project. The new model has been numerically validated and verified using synthetic data and huff and puff case study. Ideally, the new model suits fluid flow in tight UCRs. The modified Forchheimer’s model presented is solved using the MATLAB numerical method for linear multiphase flow. For the huff & puff case, very simple profiles and flow dynamics of the main flow parameters have been established and a thorough parametric analysis and verifications were performed. It has been observed that the diffusion system becomes more prominent in regulating flow velocity with low permeability of the formation rock and low viscosity of the flowing fluid. The findings indicate a behavioral alignment with a previous hypothesis that matches actual reservoir behavior.
Fluid flow in unconventional porous media is extremely complex due to the many physical processes and forces that governs fluid flow, such as diffusion, inertia, viscous flow, and sorption. Furthermore, modeling fluid flow in poor porous media often disregards the mentioned forces, assuming viscous transport is the predominant controller. This work introduces a new comprehensive flow model suitable for tight unconventional reservoirs, including viscous, inertia, diffusion, and sorption forces, to account for fluid transport in the three scales. The new model addresses 1-D linear flow in tight unconventional reservoirs and has been mathematically derived and numerically solved using MATLAB software and tested against a synthetic case study. The new models have been numerically solved and analyzed using synthetic data with previously published models that cater to the same phenomena and analyzed. In addition to studying the flow regimes effecting gas flow in porous media. It has been observed that the diffusion system becomes more prominent in regulating flow velocity with low permeability of the formation rock and low viscosity of the flowing fluid. Additionally, as a result, the sorption mechanism contribution to the flow increases with low permeability of the medium and low viscosity of the flowing fluid as it affects the concentration of gas, leading to release gas from being trapped in pores and rock surfaces.
A model for single-phase fluid flow in tight UCRs was previously produced by modifying the flow Forchheimer’s equation. The new modification addresses the fluid transport phenomena into three scales incorporating a diffusion term, a desorption term and an advection term. In this study, a new model has been numerically validated and verified using synthetic data. Ideally, the new model suits fluid flow in tight UCRs. The modified Forchheimer’s model presented, produced very simple profiles and flow dynamics of the main flow parameters have been established and a thorough parametric analysis and verifications were performed. It has been observed that a system containing the aforementioned forces becomes more prominent in regulating flow velocity with low permeability of the formation rock and low viscosity of the flowing fluid. The findings indicate a behavioral alignment with a previous hypothesis that matches actual reservoir behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.