Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsche's method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finiteelement discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.
The density variation of smectic A liquid crystals is modelled by a fourth-order PDE, which exhibits two complications over the biharmonic or other typical H 2 -elliptic fourth-order problems. First, the equation involves a "Hessian-squared" (div-div-grad-grad) operator, rather than a biharmonic (div-grad-div-grad) operator. Secondly, while positivedefinite, the equation has a "wrong-sign" shift, making it somewhat more akin to a Helmholtz operator, with lowest-energy modes arising from certain plane waves, than an elliptic one. In this paper, we analyze and compare three finite-element formulations for such PDEs, based on H 2 -conforming elements, the C 0 interior penalty method, and a mixed finite-element formulation that explicitly introduces approximations to the gradient of the solution and a Lagrange multiplier. The conforming method is simple but is impractical to apply in three dimensions; the interior-penalty method works well in two and three dimensions but has lower-order convergence and (in preliminary experiments) seems difficult to precondition; the mixed method uses more degrees of freedom, but works well in both two and Finite-element discretization of the smectic density equation three dimensions, and is amenable to monolithic multigrid preconditioning. Numerical results verify the finite-element convergence for all discretizations, and illustrate the trade-offs between the three schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.