This study investigated the effects of 4-weeks repeated sprint (RST) vs. repeated high-intensity-technique training (RTT) on physical performance. Thirty-six adolescent taekwondo athletes (age: 16 ± 1 yrs) were randomly assigned to RST (10 × 35 m sprint, 10 s rest), RTT (10 × 6 s Bandal-tchagui, 10 s rest) and control (control group (CG): no additional training) groups. Additionally, to their regular training, RST and RTT trained 2×/week for 4 weeks. Training load (TL), monotony, and strain were calculated using the rating of perceived exertion scale. The progressive specific taekwondo (PSTT), 20 m multistage shuttle run (SRT20m), 5 m shuttle run, agility T-test, taekwondo-specific agility (TSAT) and countermovement jump (CMJ) tests were performed before and after 4 weeks of training. Additionally, taekwondo athletes performed specific taekwondo exercises (i.e., repeated techniques for 10 s and 1 min). From week 1, mean TL increased continuously to week 4 and monotony and strain were higher at weeks 3 and 4 (p < 0.001). VO2max calculated from SRT20m and PSTT increased for RST and RTT in comparison to CG (p < 0.001). Agility performance during T-test and TSAT (p < 0.01) improved in RTT. The number of performed techniques during the 10 s specific exercise increased in RTT and RST (p < 0.01) for the dominant leg and in RTT for the non-dominant leg (p < 0.01). The number of techniques during the 1 min specific exercise was higher in RST and RTT compared to CG for the dominant leg (p < 0.001). Delta lactate at post-training was lower for RTT for both legs compared to RST and CG (p < 0.01). It is important to include a low-volume high-intensity training based on repeated sprint running or repeated technique in the training programs of adolescent taekwondo athletes.
This study investigated low-dose caffeine ingestion, conditioning activity (CA) effects on psycho-physical performances in young taekwondo athletes. In a randomized, double-blind, counterbalanced, crossover design, 20 athletes (10 males; 17.5 ± 0.7 yrs) performed taekwondo-specific agility test (TSAT), 10 s/multiple frequency speed of kick test (FSKT-10s/FSKT-mult) after ingesting 3 mg·kg−1 caffeine (CAF) or placebo (PL) 60 min before performing standard warm-up without (NoCA) or with CA (3 × 10 vertical jumps above 40 cm), resulting in four experimental (PL + NoCA, CAF + NoCA, PL + CA, and CAF + CA) and one control (warm-up session without CAF or CA) conditions. Mood/physical symptoms (MPSS), subjective vitality (SVS), and feeling (FS) scales were analyzed post-to-pre for all conditions. Ratings of perceived-exertion and perceived-recovery status were determined after tests. For TSAT, CAF + CA induced better performance compared with all conditions (p < 0.001). For FSKT-10s and FSKT-mult, CAF + CA induced better performance compared with all conditions (p < 0.001). For MPSS, FS, CAF + NoCA induced higher scores than PL + NoCA and PL + CA (p = 0.002, 0.009 for MPSS; p = 0.014, 0.03 for FS). For SVS, PL + CA elicited lower scores than PL + NoCA and CAF + NoCA (p = 0.01, 0.004). Sex comparisons resulted in better performances for males for TSAT (p = 0.008), FSKT-10s (p < 0.001), FSKT-mult (p < 0.01), MPSS (p = 0.02), SVS (p = 0.028), and FS (p = 0.020) scores. Caffeine and conditioning activity are two efficient performance-enhancing strategies, which could synergistically result in greater psycho-physical performances.
This study investigated the effect of area sizes (4 × 4, 6 × 6, and 8 × 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios × three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 × 4, 6 × 6, and 8 × 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 × 4 m elicited lower HRmean values compared with 6 × 6 m (d = −0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p < 0.001). For [La]post, 4 × 4 m area size induced higher values than 6 × 6 m (d = 0.99 [moderate], p < 0.001) and 8 × 8 m (d = 0.89 [moderate], p < 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p < 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F(1, 56) =30.532, p < 0.001; post-hoc: d = 1.27 [large], p < 0.001] with higher values for 4 × 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F(1, 56) = 4.419, p = 0.04; post-hoc: d = −0.46 [small], p = 0.04] and 4 × 4 m induced lower values in comparison with 6 × 6 m (d = −1.56 [large], p = 0.001) and CG (d = −0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.
The study assessed conditioning activities’ (CAs’) effects involving different work-to-rest ratios (WRR) on taekwondo athletes’ physical performance. Adolescent taekwondo athletes (age: 16 ± 1 years) randomly participated in the control six experimental conditions. Each condition was composed of standard warm-up and CA composed of plyometrics (P) or repeated high-intensity techniques (RHIT) performed using three different WRR: 1:6, 1:7, self-selected rest time (SSRT). After rest, athletes performed countermovement jump (CMJ), taekwondo specific agility test (TSAT), 10 s frequency speed kick test (FSKT-10s), multiple frequency speed kick test (FSKT-mult). P1:7, SSRT induced techniques higher number in FSKT-10s (p < 0.001 for all comparisons) and lower TSAT time (p < 0.01 for all comparisons) compared with control. Kicks-number recorded during FSKT-mult was lower in the control compared with RHIT1:6 (p = 0.001), RHIT1:7 (p < 0.001), RHITSSRT (p < 0.05), P1:7 (p < 0.001), and SSRT (p < 0.001). Kicking decrement index (DI) during FSKT-mult was lower after RHIT1:6 compared with control (p = 0.008), RHIT1:7 (p = 0.031), P 1:6 (p = 0.014), PSSRT (p = 0.041). (1) P1:7 and PSSRT can be used to improve taekwondo-specific agility and kicks-number, (2) RHIT1:6 is beneficial to maintain low DI, and (3) plyometric and different WRR-repeated-techniques can enhance kicks-number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.