Indonesia memiliki pasar yang potensial untuk perusahaan kosmetik karena memiliki jumlah penduduk yang berjumlah hampir 270 juta jiwa. Pertumbuhan industri kosmetik di Indonesia mengalami perkembangan yang pesat dengan persentase pertumbuhan 5,59% pada bulan agustus 2021 silam. Dengan pertumbuhan tersebut perusahaan kosmetik memiliki reseller yang tersebar diseluruh daerah Indonesia. Penelitian ini menggunakan data pelanggan dari salah satu reseller perusahaan kecantikan. Pelanggan mana yang sering berbelanja, produk mana yang sering mereka beli, dan klien mana yang paling setia adalah masalah umum yang sering muncul saat menjual produk kecantikan. Panjang, Kekinian, Frekuensi, dan Moneter, kadang-kadang dikenal sebagai LRFM, adalah teknik yang digunakan untuk menghitung nilai pelanggan berdasarkan riwayat transaksi mereka. Penelitian ini dilakukan untuk mengelompokan data pelanggan berdasarkan rentang waktu dan jumlah transaksi pembelian menggunakan algoritma clustering yaitu, k-means, k-medoids, dan fuzzy c-means. Harapannya, penelitian ini dapat ditentukan algoritma terbaik dalam pengelompokan data dengan membandingkan algoritma clustering K-Means, K-Medoids, dan Fuzzy C-Means dengan model LRFM. Hasil penelitian menunjukkan bahwa dalam pengelompokan data pelanggan dengan model LRFM algoritma K-Means lebih unggul dibanding K-Medoids dan Fuzzy C-means pada mengklasterisasi data pelanggan, dengan dibuktikannya pada nilai validitas DBI terbaik dengan perolehan nilai yaitu 0,167 pada jumlah klaster yaitu 6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.