Understanding the operational molecular, and metabolic networks that determine the balance between pro- and anti-ferroptotic regulatory pathways could unravel unique vulnerabilities to be exploited for cancer therapy. Here we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis in vitro and in orthotopic neuroblastoma mouse models. Specifically, the exquisite dependency on LRP8-mediated selenocysteine import is caused by the failure of MYCN-amplified cells to efficiently utilize alternative forms of selenium/selenocysteine based uptake necessary for selenoprotein biosynthesis. Increased activity of one of such transporters, SLC7A11, in MYCN-amplified cells leads to cysteine overload, progressive mitochondrial decline and impaired proliferation. These data reveal in LRP8 a targetable, and specific vulnerability of MYCN-amplified neuroblastoma cells and disclose a yet-unaccounted mechanism for selective ferroptosis induction that has the potential to become an important therapeutic entry point for MYCN-amplified neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.