Nowadays, with the increasing number of people who suffer from cardiovascular diseases such as irregular heartbeats (arrhythmia), there is a vital need to pay more attention to healthcare conditions. Therefore, the production of smart biomedical garments becomes of great necessity. The first step of manufacturing such smart garments is to build an electrocardiogram (ECG) analysis system. In this paper, the premature ventricular contraction (PVC), which is a serious life-threatening cardiovascular condition, is recognised. In addition, an improved template matching technique is developed, implemented, and evaluated to identify the irregularity of PVC beats in the QRS complex and T wave. The improvement in this technique is that a PVC recogniser is established by analysing the maximum and minimum correlation coefficient values instead of the maximum values only. Moreover, a sufficient number of features are relied upon for the accurate detection of PVC beats. The template matching algorithm is evaluated on the MIT-BIH arrhythmia, St. Petersburg Institute of Cardiological Technics (INCART), QT, MIT-BIH Supraventricular Arrhythmia, and Fantasia databases. The results show a valuable accuracy enhancement when compared with those of other recent approaches.
Wearable electrocardiogram (ECG) systems should be comfortable, non-stigmatizing, and capable of producing high-quality data. Many different designs of wearable textile ECG systems have recently emerged. Some of them are not considered to be smart garments, whereas most of the others present only the electronic side of the system. Our research work introduces a comprehensive study for an improved single-lead ECG smart shirt to identify automatically premature ventricular contraction as a common form of arrhythmia. For artifact-free results, Marvelous Designer is implemented to design our optimized relaxed slim fit shirt. In addition, a weft-knitted fabric of 80% nylon–20% spandex is used to manufacture the outer part of the shirt. Moreover, lightweight and small size electronic components are integrated to the outer part via low-resistance dry textile electrodes and 100% cotton fabric as an inner layer for easy transmission of weak ECG signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.