Rationale: Patients with severe coronavirus disease (COVID-19) require supplemental oxygen and ventilatory support. It is unclear whether some respiratory support devices may increase the dispersion of infectious bioaerosols and thereby place healthcare workers at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: To quantitatively compare viral dispersion from invasive and noninvasive respiratory support modalities. Methods: This study used a simulated ICU room with a breathing-patient simulator exhaling nebulized bacteriophages from the lower respiratory tract with various respiratory support modalities: invasive ventilation (through an endotracheal tube with an inflated cuff connected to a mechanical ventilator), helmet ventilation with a positive end-expiratory pressure (PEEP) valve, noninvasive bilevel positive-pressure ventilation, nonrebreather face masks, high-flow nasal oxygen (HFNO), and nasal prongs. Measurements and Main Results: Invasive ventilation and helmet ventilation with a PEEP valve were associated with the lowest bacteriophage concentrations in the air, and HFNO and nasal prongs were associated with the highest concentrations. At the intubating position, bacteriophage concentrations associated with HFNO (2.66 × 10 4 plaque-forming units [PFU]/L of air sampled), nasal prongs (1.60 × 10 4 PFU/L of air sampled), nonrebreather face masks (7.87 × 10 2 PFU/L of air sampled), and bilevel positive airway pressure (1.91 × 10 2 PFU/L of air sampled) were significantly higher than those associated with invasive ventilation ( P < 0.05 for each). The difference between bacteriophage concentrations associated with helmet ventilation with a PEEP valve (4.29 × 10 –1 PFU/L of air sampled) and bacteriophage concentrations associated with invasive ventilation was not statistically significant. Conclusions: These findings highlight the potential differential risk of dispersing virus among respiratory support devices and the importance of appropriate infection prevention and control practices and personal protective equipment for healthcare workers when caring for patients with transmissible respiratory viral infections such as SARS-CoV-2.
Numerous in vitro systems have previously been developed and employed for studying the effects of hemodynamics on endothelial cell (EC) dysfunction. In the majority of that work, accurate flow quantification (e.g., uniformity of the flow over the ECs) remains elusive and wall shear stress (WSS) quantifications are determined using theoretical relationships (without considering the flow channel aspect ratio effects). In addition, those relationships are not applicable to flows other than steady laminar cases. The present work discusses the development of a novel hemodynamic flow system for studying the effects of various well-quantified flow regimes over ECs. The current work presents a novel hemodynamic flow system applying the concept of a parallel plate flow chamber (PPFC) with live microscopy access for studying the effects of quantified WSS on ECs. A range of steady laminar, pulsatile (carotid wave form) and low-Reynolds number turbulent WSSs were quantified through velocity field measurements by a laser Doppler velocimetry (LDV) system, to validate the functionality of the current hemodynamic flow system. Uniformity of the flow across the channel width can be analyzed with the current system (e.g., the flow was uniform across about 65-75% of the channel width for the steady cases). The WSS obtained from the experiments had higher values in almost all of the cases when compared to the most commonly-used theoretical solution (9% < error < 16%), whereas another relationship, which considers the channel dimensions, had better agreement with the experimental results (1% < error < 8%). Additionally, the latter relationship predicted the uniform flow region in the PPFC with an average difference of <5% when compared to the experimental results. The experimental data also showed that the WSS at various locations (D, E and F) at the test section differed by less than 4% for the laminar cases representing a fully developed flow. WSS was also determined for a low-Re (Re = 2750) turbulent flow using (1) the Reynolds shears stress and (2) the time-averaged velocity profile gradient at the wall, with a good agreement (differences <16%) between the two where the first method returned a higher value than the second. Porcine aortic endothelial cell (PAEC) viability in the system and morphological cell response to laminar WSS of about 11 dyne/cm(2), were observed. These results provide performance validation of this novel in vitro system with many improved features compared to previous similar prototypes for investigation of flow effects on ECs. The integration of the LDV technique in the current study and the comparison of the results with those from theory revealed that great care must be taken when using PPFCs since the commonly used theoretical relation for laminar steady flows is unable to predict the flow uniformity (which may introduce significant statistical bias in biological studies) and the predicted WSS was subjected to greater error when compared to a more comprehensive equation presented in the current work. Mor...
Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters and cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), nonzero-mean sinusoidal laminar (NZMSL), and laminar carotid (LCRD) waveforms) on the EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling, and platelet endothelial cell adhesion molecule-1 (PECAM-1) localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs and for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A two-dimensional fast Fourier transform (2D FFT) based image processing technique was applied to analyze the F-actin directionality, and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with a high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.
The parallel plate flow chamber (PPFC) has gained popularity due to its applications in fields such as biological tissue engineering. However, most of the studies using PPFC refer to theoretical relations for estimating the wall shear stress (WSS) and, hence, the accuracy of such quantifications remains elusive for anything other than steady laminar flow. In the current study, a laser Doppler velocimetry (LDV) method was used to quantify the flow in a PPFC (H = 1.8 mm × W = 17.5 mm, Dh = 3.26 mm, aspect ratio = 9.72) under steady Re = 990, laminar pulsatile (carotid Re0-mean = 282 as well as a non-zero-mean sinusoidal Re0-mean = 45 pulse) and low-Re turbulent Re = 2750 flow conditions. A mini-LDV probe was applied, and the absolute location of the LDV measuring volume with the respect to the wall was determined using a signal monitoring technique with uncertainties being around ±27 μm. The uniformity of the flow across the span of the channel, as well as the WSS assessment for all the flow conditions, was measured with the uncertainties all being less than 16%. At least two points within the viscous sublayer of the low-Re turbulent flow were measured (with the y+ for the first point < 3) and the WSS was determined using two methods with the differences between the two methods being within 5%. This paper for the first time presents the experimental determination of WSS using LDV in a small-scale PPFC under various flow conditions, the challenges associated with each condition, and a comparison between the cases. The present data will be useful for those conducting biological or numerical modeling studies using such devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.