/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10. 1016/j.buildenv.2012.12.016 Building and Environment, 61, pp. 169-187, 2013-03-01 Practical correlations for thermal resistance of horizontal enclosed airspaces with upward heat flow for building applications Saber, Hamed H. AbstractThe thermal resistance (R-value) of an enclosed airspace depends on the emissivity of all surfaces that bound the airspace, the size and orientation of the airspace, the direction of heat transfer through the airspace, and the respective temperatures of all surfaces that define the airspace. A In this paper, previous studies undertaken by the author that focused on determining the Rvalue for vertical enclosed airspaces and horizontal enclosed airspaces with downward heat flow are extended to investigate the effect of the aspect ratio on the R-value of horizontal enclosed airspaces under an upward heat flow condition for different airspace thicknesses and having a wide range of values for effective emittance, mean temperature, and temperature differences across the horizontal airspaces. The R-values predicted from numerical simulation are compared with those provided in the ASHRAE table. Considerations were also given to investigate the potential increase in the R-values of enclosed airspaces when a thin sheet is placed horizontally in the middle of the airspace and whose surfaces have different values of emissivity. Thereafter, practical correlations are developed for determining the R-values of horizontal enclosed airspaces for future use by modellers, architects and building designers. The simplicity of these correlations for horizontal airspaces with upward heat flow along with those that were previously developed for vertical airspaces and horizontal airspaces with downward heat flow suggests that these correlations could be included in the ASHRAE Handbook of Fundamentals.
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10. 1016/j.buildenv.2011.12.010 Journal of Building and Environment, 52, pp. 32-44, 2012-06-01 Investigation of thermal performance of reflective insulations for different applications Saber, H. H. Investigation of thermal performance of reflective insulations for different applicationsSaber, H.H. NRCC-54564A version of this document is published in:
/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10.1016/j.buildenv.2011.01.009Journal of Building and Environment, 46, 7, pp. 1403-1414, 2011 Thermal analysis of above-grade wall assembly with low emissivity materials and furred-airspace Saber, H. H.; Maref, W.; Swinton, M. C.; St-Onge, C. The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42 Abstract A 3D numerical model was developed to investigate the effect of foil emissivity on the effective thermal resistance of an above-grade wall assembly with foil bonded to wood fibreboard in a furred assembly having airspace next to the foil. This model solved simultaneously the energy equation in the various material layers, the surface-to-surface radiation equation in the furred airspace assembly, Navier-Stokes equation for the airspace, and Darcy and the Brinkman equations for the porous material layers. In this work, the furring was installed horizontally. In the first phase, the present model was benchmarked against the experimental data generated by a commercial laboratory for an above-grade wall assembly. The wall consists of a conventional wood frame structure sheathed with fibreboard and covered on the interior side with a low emissivity material bonded to wood fibreboard that is adjacent to a furred airspace assembly. The results showed that the predicted R-value was in good agreement with the measured one. After gaining confidence in the present model, it was used to predict the effective thermal resistance of the same above-mentioned wall but having Oriented Strand Board (OSB) sheathing in lieu of wood fibreboard sheathing. In the second phase, the mode...
Many parts of the building envelope contain enclosed airspaces. The thermal resistance (Rvalue) of an enclosed airspace depends on the emissivity of all surfaces that bound the airspace, the size and orientation of the airspace, the direction of heat transfer through the airspace, and the respective temperatures of all surfaces that define the airspace. The 2009 ASHRAE Handbook of Fundamentals (Chapter 26) provides a table that contains the R-values for an enclosed airspace. The ASHRAE table is extensively used by modellers, architects and building designers in the design of building enclosures. T his table provides R-values for enclosed airspaces for different values of the thickness of the airspace, effective emittance, mean airspace temperature, and temperature differences across the airspace. The effect of the airspace aspect ratio (height/thickness of airspace) on the R-value is not included in the ASHRAE table. However, in a recent study on the R-value of reflective insulations using a numerical simulation model, it was shown that the aspect ratio of the airspace can affect the Rvalue of the enclosed airspace. The numerical simulation model used in this study had been benchmarked against experimental data obtained using two standard test methods: ASTM C-518 and ASTM C-1363.In this paper, a numerical simulation study was conducted, that was based on previous work focused on enclosed airspaces, to investigate the effect of the aspect ratio on the R-value of vertical enclosed airspaces of different thicknesses and having a wide range of values for effective emittance, mean temperature, and temperature differences across the airspace. The R-values predicted from numerical simulation are compared with those provided in the ASHRAE table. Considerations were also given to investigating the potential increase in R-values of enclosed airspaces when a thin sheet is placed vertically in the middle of the airspace and whose surfaces have different values of emissivity. Finally, practical correlations are developed for determining the R-values of an enclosed airspace for future use by modellers, architects and building designers. The simplicity of these correlations suggests that these could be included in the ASHRAE Handbook of Fundamentals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.