The main goal of this study is to achieve the extended operating life of the rotary regenerative air pre-heater (Ljungström) of Bandar Abbas power plant by modifying operational parameters by decreasing the corrosion. To achieve this goal, a three-dimensional CFD simulation of the Ljungström is carried out, utilizing the thermal non-equilibrium porous media model. Temperatures are validated against measured data from the power plant with a maximum relative error of 5.54% on the Celsius scale, and mass flow rates are validated with a maximum relative error of −5.25%. The effect of the Ljungström key parameters including the rotational speed, cold layer material, inlet air/flue gas temperature, and mass flow rate, are analyzed in presence of leakages and neglecting it, using porous media approach. The leakage effect is investigated considering radial and axial/peripheral clearances. Finally, a simulation is performed by applying feasible improved parameters extracted from the above analyses considering the effect of all parameters together in presence of leakages, which shows a 6.14% improvement in the Ljungström effectiveness, reducing the total leakage to about one-third of the actual model and eliminating any corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.