The nature of stock market movement has always been ambiguous for investors because of various influential factors. This study aims to significantly reduce the risk of trend prediction with machine learning and deep learning algorithms. Four stock market groups, namely diversified financials, petroleum, non-metallic minerals and basic metals from Tehran stock exchange, are chosen for experimental evaluations. This study compares nine machine learning models (Decision Tree, Random Forest, Adaptive Boosting (Adaboost), eXtreme Gradient Boosting (XGBoost), Support Vector Classifier (SVC), Naïve Bayes, K-Nearest Neighbors (KNN), Logistic Regression and Artificial Neural Network (ANN)) and two powerful deep learning methods (Recurrent Neural Network (RNN) and Long short-term memory (LSTM). Ten technical indicators from ten years of historical data are our input values, and two ways are supposed for employing them. Firstly, calculating the indicators by stock trading values as continues data, and secondly converting indicators to binary data before using. Each prediction model is evaluated by three metrics based on the input ways. The evaluation results indicate that for the continues data, RNN and LSTM outperform other prediction models with a considerable difference. Also, results show that in the binary data evaluation, those deep learning methods are the best; however, the difference becomes less because of the noticeable improvement of models' performance in the second way.
The prediction of stock groups values has always been attractive and challenging for shareholders due to its inherent dynamics, non-linearity, and complex nature. This paper concentrates on the future prediction of stock market groups. Four groups named diversified financials, petroleum, non-metallic minerals, and basic metals from Tehran stock exchange were chosen for experimental evaluations. Data were collected for the groups based on 10 years of historical records. The value predictions are created for 1, 2, 5, 10, 15, 20, and 30 days in advance. Various machine learning algorithms were utilized for prediction of future values of stock market groups. We employed decision tree, bagging, random forest, adaptive boosting (Adaboost), gradient boosting, and eXtreme gradient boosting (XGBoost), and artificial neural networks (ANN), recurrent neural network (RNN) and long short-term memory (LSTM). Ten technical indicators were selected as the inputs into each of the prediction models. Finally, the results of the predictions were presented for each technique based on four metrics. Among all algorithms used in this paper, LSTM shows more accurate results with the highest model fitting ability. In addition, for tree-based models, there is often an intense competition between Adaboost, Gradient Boosting, and XGBoost.
Prediction of stock groups values has always been attractive and challenging for shareholders. This paper concentrates on the future prediction of stock market groups. Four groups named diversified financials, petroleum, non-metallic minerals and basic metals from Tehran stock exchange are chosen for experimental evaluations. Data are collected for the groups based on ten years of historical records. The values predictions are created for 1, 2, 5, 10, 15, 20 and 30 days in advance. The machine learning algorithms utilized for prediction of future values of stock market groups. We employed Decision Tree, Bagging, Random Forest, Adaptive Boosting (Adaboost), Gradient Boosting and eXtreme Gradient Boosting (XGBoost), and Artificial neural network (ANN), Recurrent Neural Network (RNN) and Long short-term memory (LSTM). Ten technical indicators are selected as the inputs into each of the prediction models. Finally, the result of predictions is presented for each technique based on three metrics. Among all algorithms used in this paper, LSTM shows more accurate results with the highest model fitting ability. Also, for tree-based models, there is often an intense competition between Adaboost, Gradient Boosting and XGBoost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.