The antimicrobial activity of the volatile oil of
Nigella sativa
Linneaus seeds was studied. The antimicrobial principle has been isolated, identified as thymohydroquinone, and found to be active against gram-positive bacteria and yeasts.
A highly selective and sensitive method was developed for simultaneous determination of the antihistaminic drug hydroxyzine (HZ) and its pharmacologically active metabolite cetirizine (CZ) in human serum using haloperidol as internal standard. The method was based on fluorescence labeling of both drugs with a fluorescent arylboronic acid 4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl boronic acid followed by separation on silica column using a mobile phase consisting of acetonitrile and water (90:10, v/v%) containing triethylamine and acetic acid. The labeling reaction conditions were optimized and the liquid-liquid extraction method was successfully applied to extract the both drugs from serum. The linearity range was 0.025-2.00 microg/mL for HZ and CZ. The limit of detection (S/N = 3) was 10 and 5 ng/mL for HZ and CZ, respectively.
A new chiral reversed-phase (RP)-HPLC method with UV detection was developed. Enantioselective resolution of ibuprofen (IBP) was achieved using (3R,4S)-4-(3,5-dinitrobenzamido)-3-(3-(trioxysilyl)-propyl)-1,2,3,4-tetrahydro-phenanthrene [(R,R)-Whelk-O2] chiral stationary phase (4.6 mm id × 250 mm, 10 μm) with a mobile phase composed of ethanol–water (30 + 70, v/v) containing 100 mM ammonium acetate at a flow rate of 1.3 mL/min using diode array detector at λ 220 nm. Calibration curves were linear over the concentration range of 20–180 μg/mL for both IBP enantiomers. Mean % recoveries ±SD of 99.74 ± 1.73 and 99.60 ± 0.93 were obtained for dexibuprofen (dex-IBP) and levoibuprofen (levo-IBP), respectively. Intra- and interday precision calculated as RSD, % were not more than 1.66% for dex-IBP and 1.93% for levo-IBP. The detection limits were 2.09 and 2.06 μg/mL for dex-IBP and levo-IBP, respectively. The method was successfully applied for the determination of dex-IBP in tablet dosage form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.