In this study, the guidance and control problem of a single-channel spinning missile is investigated. The missile utilizes a single ON-OFF actuator to drive a pair of control surfaces (e.g. elevators) and consequently to perform all required lateral maneouvers. An approximated linear response of the so-called non-rotating frame to ON-OFF input, applied to the rotating frame, is derived using the multiple-input describing function technique. It is shown that there is a relationship between the response of the non-rotating frame and that of the equivalent non-rotating body. It is also shown that the two-channel flight controller, designed for the equivalent non-rotating body, can be reduced to a single-channel controller, the output of which is applied to the rotating body. A necessary condition is introduced for this purpose. A proportional navigation guidance law for such a spinning missile is also introduced that generates an angular rate command instead of the acceleration command. Finally, the performance of the proposed controller in the presence of noise and uncertainties is validated through flight simulations.
The use of Model Aided Inertial Navigation (MAIN) during the landing of an Unmanned Aerial Vehicle (UAV) is investigated. A new MAIN algorithm is proposed, which is fast and accurate enough to be used in automatic landing. In this algorithm, the six Degree of Freedom (6DoF) model of the UAV is tightly coupled with the inertial navigation system; thus, the 6DoF model acts as an aiding system for the INS and vice versa. In the last parts of the landing phase in proximity of Earth, the proposed algorithm also estimates and removes the Ground Effect (GE) uncertainties and provides the height controller with a realistic model. An adaptive controller based on a parametric state-space model is used to adjust the height controller gains as the flight condition changes due to GE. Simulation results show that the proposed algorithm provides sufficient accuracy for automatic landing of UAVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.