Stainless steel bipolar plates (BPPs) are the preferred choice for proton exchange membrane fuel cells (PEMFCs); however, a surface coating is needed to minimize contact resistance and corrosion. In this paper, Ni–Mo and Ni–Mo–P coatings were electroplated on stainless steel BPPs and investigated by XRD, SEM/EDX, AFM and contact angle measurements. The performance of the BPPs was studied by corrosion and conduction tests and by measuring their interfacial contact resistances (ICRs) ex situ in a PEMFC set‐up at varying clamping pressure, applied current and temperature. The results revealed that the applied coatings significantly reduce the ICR and corrosion rate of stainless steel BPP. All the coatings presented stable performance and the coatings electroplated at 100 mA cm−2 showed even lower ICR than graphite. The excellent properties of the coatings compared to native oxide film of the bare stainless steel are due to their higher contact angle, crystallinity and roughness, improving hydrophobicity and electrical conductivity. Hence, the electroplated coatings investigated in this study have promising properties for stainless steel BPPs and are potentially good alternatives for the graphite BPP in PEMFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.