This article focuses on the output feedback control of single-link flexible-joint robot manipulators (SFJRMs) with matched disturbances and parametric uncertainties. Formally, four sensing elements are required to design the controller for single-link manipulators. We have designed a robust control technique for the semiglobal stabilization problem of the angular position of the link in the SFJRM system, with the availability of only a position sensing device. The sliding mode control (SMC) based output feedback controller is devised for SFJRM dynamics. The nonlinear model of SFJRM is considered to estimate the unknown states utilizing the high-gain observer (HGO). It is shown that the output under SMC using HGO-based estimated states coincides with that using original states when the gains of HGO are sufficiently high. Finally, the results are presented showing that the designed control technique works well when the SFJRM model is uncertain and matched perturbations are expected.
Purpose This paper aims to devise a robust controller for the non-linear aircraft model using output feedback control topology in the presence of uncertain aerodynamic parameters. Design/methodology/approach Feedback linearization-based state feedback (SFB) controller is considered along with a robust outer loop control which is designed using Lyapunov’s second method. A high-gain observer (HGO) in accordance with the separation principle is used to implement the output feedback (OFB) control scheme. The robustness of the controller and observer is assessed by introducing uncertain aerodynamics coefficients in the dynamic model. The proposed scheme is validated using MATLAB/SIMULINK. Findings The efficacy of the proposed scheme is authenticated with the simulation results which show that HGO-based OFB control achieves the SFB control performance for a small value of the high-gain parameter in the presence of uncertain aerodynamic parameters. Originality/value A HGO for the non-linear model of aircraft with uncertain parameters is a novel contribution which could be further used for the unmanned aerial vehicles autopilot, flight trajectory tracking and path following.
In this article, a finite-time robust tracking control of output constrained multirotor unmanned aerial vehicle (UAV) is proposed. A finite-time sliding mode control (SMC) technique with barrier Lyapunov function (BLF) is used to assure robustness of the derived control laws while maintaining the output in specified constraints. A comparison of the proposed controller is carried out with conventional SMC to manifest the effectiveness of the output-constrained tracking control. Numerical simulations of quadrotor UAV with exogenous disturbances and time-invariant output constraints demonstrate the efficacy of the proposed controller regarding robustness, finite-time convergence, and chattering reduction. INDEX TERMS Barrier function, finite-time convergence, output constraint, quadrotor UAV, sliding mode control, trajectory tracking.
In this paper, an Improved Integral Power Rate Exponential Reaching Law (IIPRERL) Sliding Mode Control strategy has been presented to cater to the chattering problem and stability issue with the focusing on to achieve minimum steady-state errors in the presence of matched disturbances for a quadrotor. Control strategies have been implemented on quadrotor which is 6 Degree of Freedom (DOF) underactuated model and it is derived via Newton-Euler(NE) equations. The main focus of this article is to design two flight control strategies for a quadrotor. Firstly, a novel IIPRERL-SMC is designed through Improved Integral Sliding Mode Control (II-SMC) via proper gain scheduling by system Eigenvalues. The control objective is to construct a controller such that would force the state trajectories to approach the sliding surface with an exponential policy. Meanwhile, a strong condition for reaching the law of sliding surface via Hurwitz stability has been introduced to the hovering of the quadrotor. Secondly, kinodynamic Rapidly Exploring Random Tree with Fixed Node (RRT*FN) which is an incremental sampling-based optimal algorithm has been implemented for online navigation and flight control of the quadrotor system. Online planning which is based on the offline one, is given on-board radar readings which gradually produces a smooth 3-D trajectory aiming at reaching a predetermined target in an unknown environment. The performance and stability of the quadrotor are completely examined by utilizing Lyapunov stability analysis. Simulations are presented to verify that the proposed scheme is effective with Hurwitz stability for both translational and rotational parts of the quadrotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.