Knockdown of myostatin gene (MSTN), transforming growth factor-β superfamily, and a negative regulator of the skeletal muscle growth, by RNA interference (RNAi), has been reported to increase muscle mass in mammals. The current study was aimed to cotransfect two anti-MSTN short hairpin RNA (shRNA) constructs in caprine fetal fibroblast cells for transient silencing of MSTN gene. In the present investigation, approximately 89% MSTN silencing was achieved in transiently transfected caprine fetal fibroblast cells by cotransfection of two best out of four anti-MSTN shRNA constructs. Simultaneously, we also monitored the induction of IFN responsive genes (IFN), pro-apoptotic gene (caspase3) and anti-apoptotic gene (MCL-1) due to cotransfection of different anti-MSTN shRNA constructs. We observed induction of 0.66-19.12, 1.04-4.14, 0.50-3.43, and 0.42-1.98 for folds IFN-β, OAS1, caspase3, and MCL-1 genes, respectively (p < 0.05). This RNAi based cotransfection method could provide an alternative strategy of gene knockout and develop stable caprine fetal fibroblast cells. Furthermore, these stable cells can be used as a cell donor for the development of transgenic cloned embryos by somatic cell nuclear transfer (SCNT) technique.
Transgenic food animal production is one of the potential and need oriented research to mitigate the food crises of the world. In vitro gene silenced animal cells and making use of these cells for transgenesis one of the suitable way to produce productive animals. Myostatin is a negative regulator of muscle growth, has the potential to increase the muscle mass upon its silencing. Four Hush 29-mer anti- myostatin (MSTN) shRNA constructs were checked for myostatin gene silencing in caprine foetal fibroblast cells and its subsequent effect on basic helix– loop–helix (bHLH) transcription factors. These factors are necessary for the terminal differentiation, proliferation, and homeostasis of muscle development. Different shRNA constructs displayed 55.1 to 91.5% (p less than 0.01) of myostatin silencing in caprine foetal fibroblast cells and upregulation of myogenic gene. Upregulation of 7.97 to 111.67 % for MyoD, 77.0 % to 319.47 % for myogenin, 16.67 % to 138.0 % for Myf5 were observed . The Pearson correlation established a negative correlation between myostatin and genes under study. Result suggests that knockdown of MSTN a potential approach to improve caprine musculatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.