The emergence of highly virulent community acquired Staphylococcus aureus and continued progression of resistance to multiple antimicrobials, including methicillin and vancomycin, marks the reemergence of S. aureus as a serious health care threat. Investigation of proteins localized to the cell surface could help to elucidate mechanisms of virulence and antibiotic resistance in S. aureus. In this study, proteomic profiling methods were developed to solubilize, display, and evaluate abundance levels of proteins present in the supernatants of the lysostaphin-digested cell envelope from cultured vancomycin-intermediate S. aureus (VISA) cells. Combining approaches of 2-DE or chromatographic separation of proteins with MS analyses resulted in the identification of 144 proteins of particular interest. Of these proteins, 48 contained predicted cell wall localization or export signal motifs, including 14 with distinct covalent peptidoglycan-anchor sites, four of which are uncharacterized to date. One of the two most abundant cell envelope proteins, which showed remarkably high variations in MW and pI in the 2-DE gel display, was the S. aureus surface protein G. The display of numerous secreted proteins that are not covalently cell wall-anchored, suggests that, in the exponential growth phase, secreted proteins can be retained physiologically in the cell envelope and may interact with cell wall-anchored proteins and carbohydrate structures in a manner yet to be determined. The remaining 96 proteins, devoid of recognizable motifs, were repeatedly profiled in the VISA cell envelope fractions. We describe a novel semiquantitative method to determine abundance factors of such proteins in 2-DE gels of cell envelope fractions relative to whole cell lysates and discuss these data in the context of true cell envelope localization versus experimentally caused cell lysis.
Yersinia pestis cells were grown in vitro at 26 and 37 6C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 6C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small b-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 6C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 6C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationaryphase cells grown at 26 6C, but not at 37 6C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658-y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.
The periplasmic proteome of Yersinia pestis strain KIM6+ was characterized using differential 2-DE display of proteins isolated from several subcellular fractions. Circa 160 proteins were designated as periplasmic, including 62 (putative) solute-binding proteins of ATP-binding cassette (ABC) transporters (SBPs) and 46 (putative) metabolic enzymes. More than 30 SBPs were significantly increased in abundance during stationary phase cell growth, compared to the exponential phase. The data suggest that nutrient exhaustion in the stationary phase triggers cellular responses resulting in the induced expression of numerous ABC transporters, which are responsible for the import of solutes/nutrients. Limited availability of inorganic phosphate (P(i)) also caused dramatic proteomic changes. Nine proteins were functionally linked to the mobilization and import of three small molecules (P(i), phosphonate and glycerol-3-phosphate) and accounted for nearly half of the total protein mass in the periplasm of P(i)-starved cells. When cells were grown at 26 degrees C versus 37 degrees C, corresponding to ambient temperatures in the flea vector and mammalian hosts, respectively, several periplasmic proteins with no known roles in the Y. pestis life cycle were strongly altered in abundance. This included a putative nitrate/sulfonate/bicarbonate-specific SBP (Y1004), encoded by the virulence-associated plasmid pMT1 and increased in abundance at 37 degrees C.
Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. We present the first comprehensive proteome analysis of this pathogen, profiling proteins from bacteria cultured in vitro and bacterial isolates from the large bowel of infected gnotobiotic piglets (in vivo). Overall, 1061 distinct gene products were identified. Differential display analysis revealed that SD1 cells switched to an anaerobic energy metabolism in vivo. High in vivo abundances of amino acid decarboxylases (GadB and AdiA) which enhance pH homeostasis in the cytoplasm and protein disaggregation chaperones (HdeA, HdeB and ClpB) were indicative of a coordinated bacterial survival response to acid stress. Several type III secretion system (T3SS) effectors were increased in abundance in vivo, including OspF, IpaC and IpaD. These proteins are implicated in invasion of colonocytes and subversion of the host immune response in S. flexneri. These observations likely reflect an adaptive response of SD1 to the hostile host environment. Seven proteins, among them the T3SS effectors OspC2 and IpaB, were detected as antigens in western blots using piglet antisera. The outer membrane protein OmpA, the heat shock protein HtpG and OspC2 represent novel SD1 subunit vaccine candidates and drug targets.
Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr), an alkaline solution (180 mM Na 2 CO 3 , pH 11.3) and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14). Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i) integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries); (ii) peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries); (iii) cytoplasmic or ribosomal membranecontaminating proteins (80 entries). Thirty-one proteins were experimentally associated with the outer membrane (OM). Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high M r fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM) proteins with two or more predicted transmembrane domains (TMDs) were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.