We report here a proof-of-concept for the cleavage of unstrained remote Csp 3 −Csp 3 bonds at room temperature assisted by a directing group, opening up new possibilities to use aliphatic carboxylic acids as suitable alkenyl coupling partners. This strategy involves the Pdmediated Csp 3 −H activation directed by a tethered 8-aminoquinoline group, followed by a concerted asynchronous carbene insertion into the Pd−C bond, and an unexpected β-carbon−carbon bond splitting. The insertion of a coupling partner into a Pd−C bond is a novel route to promote C−C bond cleavage, which in contrast to most common methodologies does not rely on the use of strained carbocycles.
A ligand-controlled Pd-catalyzed cascade relying in the control of two distinctive processes: oxidative addition to Pd(0) and isomerization of olefins.
The functionalization of C–H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C–H bonds along with the cleavage of C–C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C–C bond takes place, basically attending to the scission of strained or unstrained C–C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C–H and C–C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.