In this paper, we first introduce a network of learning automata, which we call it as distributed learning automata and then propose some iterative algorithms for solving stochastic shortest path problem. These algorithms use distributed learning automata to find a policy that determines a path from a source node to a destination node with minimal expected cost (length). In these algorithms, at each stage distributed learning automata determines which edges to be sampled. This sampling method may result in decreasing unnecessary samples and hence decreasing the running time of algorithms. It is shown that the shortest path is found with a probability as close as to unity by proper choice of the parameters of the proposed algorithms.
The cellular learning automata, which is a combination of cellular automata, and learning automata, is a new recently introduced model. This model is superior to cellular automata because of its ability to learn and is also superior to a single learning automaton because it is a collection of learning automata which can interact with each other. The basic idea of cellular learning automata, which is a subclass of stochastic cellular learning automata, is to use the learning automata to adjust the state transition probability of stochastic cellular automata. In this paper, we first provide a mathematical framework for cellular learning automata and then study its convergence behavior. It is shown that for a class of rules, called commutative rules, the cellular learning automata converges to a stable and compatible configuration. The numerical results also confirm the theoretical investigations.
One popular learning algorithm for feedforward neural networks is the backpropagation (BP) algorithm which includes parameters, learning rate (eta), momentum factor (alpha) and steepness parameter (lambda). The appropriate selections of these parameters have large effects on the convergence of the algorithm. Many techniques that adaptively adjust these parameters have been developed to increase speed of convergence. In this paper, we shall present several classes of learning automata based solutions to the problem of adaptation of BP algorithm parameters. By interconnection of learning automata to the feedforward neural networks, we use learning automata scheme for adjusting the parameters eta, alpha, and lambda based on the observation of random response of the neural networks. One of the important aspects of the proposed schemes is its ability to escape from local minima with high possibility during the training period. The feasibility of proposed methods is shown through simulations on several problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.