In this study, adding a headrest to the conventional vehicle driver seat is investigated to improve the driver comfort and decrease the driver damages. For this purpose, a conventional biomechanical human body model of wholebody vibrations is provided and modified by adding a head degree of freedom to the body model and a headrest to the seat model. The basic model is in the sitting posture, lumped parameters and has nine DOFs for the human body, on contrary to the proposed model which has ten DOFs. The new human body DOF is the twisting motion of the head and neck. This new DOF is generated because of headrest adding to the driver’s seat. To determine the head discomforts, the Seat to Head (STH) indexes are studied in two directions: horizontal and vertical. The Genetic Algorithm (GA) is used to optimize the STH in different directions. The optimization variables are stiffness and damping parameters of the driver’s seat which are 12 for the basic model and are 16 for a new seat. The integer programming is used for time reduction. The results show that new seat (equipped by headrest) has very better STH in both directions.
This paper aims to optimize a fuzzy logic controller (FLC) active seat suspension applied to an articulated truck semi-trailer seat to improve ride comfort considering the energy consumption of the controller. The proposed truck model is a linear truck with 13 degree-of-freedom (DOF). Two objective functions are defined seat root mean square (RMS) acceleration related to ride comfort and controller RMS force pertaining to the energy consumption of the controller. The Pareto Front is obtained for these two objective functions using the multi-objective optimization method in MATLAB. The optimization is based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II), which has been proposed as a powerful decision space exploration engine based on a genetic algorithm (GA) for solving a multi-objective function problem. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), which is simple and effective, selects a set of optimal controller parameters. In addition, considering the changes of effective parameters in the truck, including trailer load and location, tyres’ stiffness and the driver’s mass, has been investigated to provide Monte Carlo sensitivity analysis of these parameters on objective functions. Finally, using ISO 2631-1, the ride comfort and controller required force levels before and after optimization are compared. The results of this optimization indicate a significant improvement in ride comfort and controller force which has been different in various conditions of truck speed and road classes. The results have shown that the maximum amount of improvement in ride comfort is about 25% which happens on Class-C road (at the truck speed of 60 km/h), and the control force reduction peaks at around 60%, which occurs on Class-A road (at the truck speed of 60 km/h). The simulation is validated by MSC-ADAMS software.
The purpose of this study is to optimise the different speed control humps by considering the vertical and horizontal acceleration of the driver’s head. In previous researches, the main focus was only on vertical acceleration, but in this study, horizontal acceleration of the head is also considered. Here, the root mean square (RMS) of acceleration of head is considered as a measure of occupant comfort. The modelling is performed by a non-linear half-car suspension system (4-DOF) with a linear model of a driver (10-DOF) and a seat. The hamps under study are circular, sinusoidal, half-sinusoidal, and trapezoidal. Finally, by analysing the results, the optimal design of each type of hump is performed. The objective function used is a combination of horizontal and vertical acceleration which is performed using MATLAB genetic algorithm. The results show a significant reduction in horizontal and vertical acceleration at all speeds. From this modelling, it is possible to extract a suitable range for passing the speed of cars over different types of humps. In this study, it is shown that the acceleration values for the circular and half-sinusoidal humps at all speeds are quite close to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.