The presence and generation of fines and dust in the bulk of biomass pellets have inflicted several problems in the supply chain during transportation and storage, and the breakage behavior of pellets has been scarcely studied so far. Fines and dust are the consequences of impact and abrasive forces through the whole supply chain; however, the breakage happens at the particle level. Therefore, to study the fines generation, first, the breakage behavior of individual pellets should be understood, and then, the behavior of the bulk materials in operational conditions can be investigated. This paper aims to investigate the breakage behavior of individual pellets under experimental compression tests and to introduce a calibrated numerical model using discrete element method (DEM) in order to pave the way for further studies on pellet breakage. For that purpose, seven different types of biomass pellets were studied experimentally, and then, a calibrated model was introduced via the Timoshenko-Ehrenfest beam theory using DEM. Results show that the model could reasonably predict the breakage behavior of pellets under uniaxial and diametrical compressions. The findings could help to develop a new design of the equipment for transportation and handling of biomass pellets with the aim to reduce the amount of generating fines and dust.
Biomass pellets provide a pivotal opportunity in promising energy transition scenarios as a renewable source of energy. A large share of the current utilization of pellets is facilitated by intensive global trade operations. Considering the long distance between the production site and the end-user locations, pellets may face fluctuating storage conditions, resulting in their physical and chemical degradation. We tested the effect of different storage conditions, from freezing temperatures (−19 • C) to high temperature (40 • C) and humidity conditions (85% relative humidity), on the physicochemical properties of untreated and torrefied biomass pellets. Moreover, the effect of sudden changes in the storage conditions on pellet properties was studied by moving the pellets from the freezing to the high temperature and relative humidity conditions and vice versa. The results show that, although storage at one controlled temperature and RH may degrade the pellets, a change in the temperature and relative humidity results in higher degradation in terms of higher moisture uptake and lower mechanical strength.
With the recent increase in biomass pellet consumption, the mechanical degradation of pellets during transport and handling has become more important. ISO standard 17831-1 is an accepted global standard that is commonly used amongst researchers and industries to determine the mechanical durability of pellets. However, the measured mechanical durability sometimes fails to match the certificate accompanying the shipment. In such cases, pellet length specifications are suspected to play a role. This paper studies the effect of pellet length on mechanical durability for various types of commercially produced biomass pellets. In addition, the effect of test conditions and torrefaction on the mechanical durability of biomass pellets has been investigated. To study the effect of pellet length, pellets were classified into three groups: shorter than 15 mm, 15 to 30 mm, and longer than 30 mm, and their length distributions were measured using an in-house image processing tool. Then, the mechanical durability of pellets was measured using ISO standard 17831-1. The mechanical durability results were compared to random-sized pellet samples. To study the effect of test conditions, the mechanical durability test was operated at different time intervals to elucidate the effect of tumbling at different conditions. The results show that the mechanical durability depends highly on the length distribution of the pellets, with a difference between categories of up to 13%. It was also observed that the mechanical durability remains relatively constant after a specific time interval. Based on the results, we highly recommend modifying the current ISO standard to account for the pellet length distribution (PLD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.