Aim. We aimed to determine spinopelvic balance in 8–19-year-old-people in order to assess pelvic and spinal parameters in sagittal view. Methods. Ninety-eight healthy students aged 8–19 years, who lived in the central parts of Tehran, were assessed. Demographic data, history of present and past diseases, height (cm), and weight (kg) were collected. Each subject was examined by an orthopedic surgeon and spinal radiographs in lateral view were obtained. Eight spinopelvic parameters were measured by 2 orthopedic spine surgeons.
Results. Ninety-eight subjects, among which 48 were girls (49%) and 50 boys (51%), with a mean age of 13.6 ± 2.9 years (range: 8–19) were evaluated. Mean height and weight of children were 153.6 ± 15.6 cm and 49.9 ± 13.1 kgs, respectively. Mean TK, LL, TT, LT, and PI of subjects were 37.1 ± 9.9°, 39.6 ± 12.4°, 7.08 ± 4.9°, 12.0 ± 5.9°, and 45.37 ± 10.7°, respectively. Conclusion. Preoperation planning for spinal fusion surgeries via applying PI seems reasonable. Predicating “abnormal” to lordosis and kyphosis values alone without considering overall sagittal balance is incorrect. Mean of SS and TK in our population is slightly less than that in Caucasians.
Aluminium-free Mg-4Zn-4Sn-0.6Ca-0.5Mn alloys, with similar mechanical properties to natural bone, were produced and used as substrates for electrophoretic deposition (EPD) of hydroxyapatite (HA) powder. HA powder was deposited at three levels of DC voltage (50, 100 and 150 V) at different times. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used for phase characterization. Cavities appeared in coated specimens with a coating thickness of more than 70 µm and microcracks appeared in a coating thickness of more than 100 µm. The maximum adhesion strength of coatings was 2.8 ± 1.1 MPa for 150 V-5 s. Electrochemical impedance spectroscopy (EIS) test showed that coating resistance and charge transfer resistance increased in the coated samples of 100 V-5 s and 150 V-5 s, respectively.
Context: Advent of smartphones has brought a wide range of clinical measurement applications (apps) within the reach of most clinicians. The vast majority of smartphones have numerous built-in sensors such as magnetometers, accelerometers, and gyroscopes that make the phone capable of measuring joint range of motion (ROM) and detecting joint positions. The iHandy Level app is a free app which has a visual display alike with the digital inclinometer in regard to numeric size. Objective: The purpose of this systematic review was to evaluate available evidence in the literature to assess the psychometric properties (ie, reliability and validity) of the iHandy Level app in measuring lumbar spine ROM and lordosis. Methods: PubMed/MEDLINE, Scopus, Ovid, Google Scholar, and ScienceDirect were searched from inception to September 2018 for single-group repeated-measures studies reporting outcomes of lumbar spine ROM or lordosis in adult individuals without symptoms of low back pain (LBP) or patients with LBP. The quality of each included study was assessed using the Quality Appraisal of Reliability Studies checklist. Results: A total of 4 studies with 273 participants were included. Two studies focused on measuring active lumbar spine ROM, and 2 studies evaluated lumbar spine lordosis. Three studies included asymptomatic subjects, and one study recruited patients with LBP. The results showed that the iHandy Level app has sufficient psychometric properties for measuring standing thoraco-lumbo-sacral flexion, extension, lateral flexion, isolated lumbar spine flexion ROM, and lumbar spine lordosis in asymptomatic subjects. One study reported poor concurrent validity with a bubble inclinometer (r = .19–.53), poor intrarater reliability (intraclass correlation coefficient = .19–.39), and poor to good interrater reliability (intraclass correlation coefficient = .24–.72) for the measurement of active lumbar spine ROM using the iHandy Level app in patients with LBP. Conclusions: This review provided a valuable summary of the research to date examining the psychometric properties of the iHandy Level app for measuring lumbar spine ROM and lordosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.