Autonomous agents can negotiate on behalf of buyers and sellers to make a contract in the e-marketplace. In bilateral negotiation, they need to find a joint agreement by satisfying each other. That is, an agent should learn its opponent's preferences. However, the agent has limited time to find an agreement while trying to protect its payoffs by keeping its preferences private. In doing so, generating offers with incomplete information about the opponent's preferences is a complex process and, therefore, learning these preferences in a short time can assist the agent to generate proper offers. In this paper, we have developed an incremental on-line learning approach by using a hybrid soft-computing technique to learn the opponent's preferences. In our learning approach, first, the size of possible preferences is reduced by encoding the uncertain preferences into a series of fuzzy membership functions. Then, a simplified genetic algorithm is used to search the best fuzzy preferences that articulate the opponent's intention. Experimental results showed that our learning approach can estimate the opponent's preferences effectively. Moreover, results indicate that agents which use the proposed learning approach not only have more chances to reach agreements but also will be able to find agreements with greater joint utility.
Abstract:In recent years, recommender systems (RS) provide a considerable progress to users. RSs reduce the cost of a user's time in order to reach to desired results faster. The main issue of RSs is the presence of cold users which are less active and their preferences are more difficult to detect. The aim of this study is to provide a new way to improve recall and precision in recommender systems for cold users. According to the available categories of items, prioritization of the proposed items is improved and then presented to the cold user. The obtained results show that in addition to increased speed of processing, recall and precision have an acceptable improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.