Supply chain management intends to integrate supply chains' activities such as material flow, information flow and financial issues. Material flow management is the most significant issue since the inventory level in the whole supply chain could be optimized by an integrated plan. In other words, when one member of the supply chain plans to reduce its inventory level solely, despite reducing inventory in this node the inventory will be stocked in other partners' warehouses. Therefore, in this paper a new mathematical model has been developed to facilitate the process of finding the optimum solution in economic production, purchase and delivery lots and their schedules in a three-echelon supply chain environment; including raw material in suppliers, manufacturer and assembly facility as a customer. The manufacturer with a flow shop system provides its requirements from supplier, assemble multiple products, and delivers products to the customer (automotive OEM alike) on an optimum multiple delivery points. The delivery cycles would be identified through the production common cycle regarding the supply chain flexibility. Finally, a modified real-valued Genetic Algorithm (MRGA), and an Optimal Enumeration Method (OEM) are developed, and some numerical experiments have been done and compared as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.