In this research, performance multiple tuned mass dampers (MTMDs) with consideration of the hysteresis behavior and cracking effect of concrete structures under near field earthquake records with high intensity are carefully investigated. Inelastic analysis was performed by employing Takeda hysteresis model, on mathematical model in a state-space form using a program written in Matlab. In the first step, optimum parameter of TMD for single story frame equipped by spectrum TMD is obtained. In the second step, the best place of MTMDs for ten-story frame from two aspects, plastic energy dissipation and maximum lateral displacement, has been studied. And in the last step, the effect of building height in performance of MTMDs is investigated by analysis of a twenty-story resistance frame. Results show that entering the structure into the field of nonlinear behavior and increasing structure height, TMD does not affect the linear behavior of structure. On the other hand, by using the TMD better energy distribution is formed in structure and maximum energy of plastic hinges is reduced. To achieve the best place TMD should multiple target criteria parameters and all potential placement of MTMD simultaneously applied.
Abstract. During the past two decades, countless and valuable studies have been conducted on passive seismic control of structures on two-dimensional shear frame model and a few on three-dimensional shear frames. To simulate the actual behavior of buildings with higher accuracy, it is necessary to use more realistic and more complex models in evaluating the seismic performance and controller design. In this study, two indicators related to the structural damage and efficiency control have been used for the seismic control of the structure considering the soil-structure interaction (SSI) effect. with a detailed and complex three-dimensional finite element model in the OpenSees software, a twenty-story concrete structure is designed by the performance based plastic design (PBPD) method; the optimization process of control system and structure performance under the circumstances taken into account at the design stage have been studied. Seismic performance subjected to three acceleration records of far-field earthquake has been investigated and to consider the effects of SSI, the simplified cone physical model has been used. Results indicate that according to the type of soil for which the structure is designed, Tuned Mass Damper (TMD) cannot be reliably used to reduce lateral displacement of the structure, but TMD shows a proper performance in reducing inter-story drift
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.