Purpose
The main purpose of this paper is to predicate financial distress using the worst-practice-frontier data envelopment analysis (WPF-DEA) model and artificial neural network.
Design/methodology/approach
In this study, a neural network technique was used to forecast inputs and outputs in the future time-period. Using a WPF-DEA model, financially distressed companies were identified based on the worst performance, and an improvement solution was provided for those decision-making units.
Findings
This study’s findings show that dynamic WPF-DEA has high predictability in corporate financial distress, and it can be used with high confidence. Based on the future time-period results, JOUSH & OXYGEN was predicted to be a financially distressed company in the two future time-periods.
Originality/value
In recent decades, globalization, technological changes and a competitive space have increased uncertainty in the economic environment. In such circumstances, economic growth certainly depends on correct decision-making and optimal allocation of resources. It can be done by introducing appropriate tools and models for assessing corporate financial conditions, including financial distress and bankruptcy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.