Radiometer gain is generally a nonstationary random process, even though it is assumed to be strictly or weakly stationary. Since the radiometer gain signal cannot be observed independently, analysis of its nonstationary properties would be challenging. However, using the time series of postgain voltages to form an ensemble set, the radiometer gain may be characterized via radiometer calibration. In this article, the ensemble detection algorithm is presented by which the unknown radiometer gain can be analytically characterized when it is following a Gaussian model (as a strictly stationary process) or a 1st order autoregressive, AR(1) model (as a weakly stationary process). In addition, in a particular radiometer calibration scheme, the nonstationary gain can also be represented as either Gaussian or AR(1) process, and parameters of such an equivalent gain model can be retrieved. However, unlike stationary or weakly stationary gain, retrieved parameters of the Gaussian and AR(1) processes, which describe the nonstationary gain, highly depend on the calibration setup and timings. Index Terms-Autoregressive AR(1) model, ensemble detection, nonstationary radiometer gain, radiometer calibration. I. INTRODUCTION R ADIOMETERS are widely used to measure geophysical parameters to examine variations in the earth and planetary systems. These measurements typically need to be obtained over large temporal or spatial scales. However, enhanced radiometric accuracy and sensitivity are required in microwave radiometry, as an accurate radiometer facilitates the possibility of high-resolution contrasts in variations of physical parameters from the rest of the measured noise. For instance, the retrieval of geophysical parameters, such as precipitable water vapor, ocean surface salinity, wind measurements, and liquid and ice water paths require enhanced accuracy and finer resolution [1]-[5]. Thus, given the increasing importance of radiometer calibration in deriving greater geophysical information from Manuscript
The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active–Passive (SMAP) radiometer has been providing geolocated power moments measured within a 24 MHz band in the protected portion of L-band, i.e., 1400–1424 MHz, with 1.2 ms and 1.5 MHz time and frequency resolutions, as its Level 1A data. This paper presents important spectral and temporal properties of the radio frequency interference (RFI) in the protected portion of L-band using SMAP Level 1A data. Maximum and average bandwidth and duration of RFI signals, average RFI-free spectrum availability, and variations in such properties between ascending and descending satellite orbits have been reported across the world. The average bandwidth and duration of individual RFI sources have been found to be usually less than 4.5 MHz and 4.8 ms; and the average RFI-free spectrum is larger than 20 MHz in most regions with exceptions over the Middle East and Central and Eastern Asia. It has also been shown that, the bandwidth and duration of RFI signals can vary as much as 10 MHz and 10 ms, respectively, between ascending and descending orbits over certain locations. Furthermore, to identify frequencies susceptible to RFI contamination in the protected portion of L-band, observed RFI signals have been assigned to individual 1.5 MHz SMAP channels according to their frequencies. It has been demonstrated that, contrary to common perception, the center of the protected portion can be as RFI contaminated as its edges. Finally, there have been no significant correlations noted among different RFI properties such as amplitude, bandwidth, and duration within the 1400–1424 MHz band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.