The objective of this study was to determine whether children with nonsyndromic craniosynostosis and plagiocephaly without synostosis demonstrated cognitive and psychomotor delays when compared with a standardized population sample. This was the initial assessment of a larger prospective study, which involved 21 subjects with nonsyndromic craniosynostosis (mean age, 10.9 months) and 42 subjects with plagiocephaly without synostosis (mean age, 8.4 months). Each child was assessed using the Bayley Scales of Infant Development-II (BSID-II) for cognitive and psychomotor development before therapeutic intervention (surgery for craniosynostosis and molding-helmet therapy for plagiocephaly without synostosis). The distribution of the scores was divided into four groups: accelerated, normal, mild delay, and significant delay. The distributions of the mental developmental index (MDI) and the psychomotor developmental index (PDI) were then compared with a standardized Bayley's age-matched population, using Fisher's exact chi-square test. Within the craniosynostosis group, the PDI scores were significantly different from the standardized distribution (p < 0.001). With regard to the PDI scores, 0 percent of the subjects in the craniosynostosis group were accelerated, 43 percent were normal, 48 percent had mild delay, and 9 percent had significant delay. In contrast, the MDI scores were not statistically different (p = 0.08). Within the group with plagiocephaly without synostosis, both the PDI and MDI scores were significantly different from the normal curve distribution (p < 0.001). With regard to the PDI scores, 0 percent of the subjects in the group with plagiocephaly without synostosis were accelerated, 67 percent were normal, 20 percent had mild delay, and 13 percent had significant delay. With regard to the MDI scores, 0 percent of the subjects in this group were accelerated, 83 percent were normal, 8 percent had mild delay and 9 percent had significant delay. This study indicates that before any intervention, subjects with single-suture syndromic craniosynostosis and plagiocephaly without synostosis demonstrate delays in cognitive and psychomotor development. Continued postintervention assessments are needed to determine whether these developmental delays can be ameliorated with treatment.
The use of a patient's own hand as a tool to estimate the area of burn injury is well documented. The area of the palmar surface of one hand has been estimated to be 1 percent of the body surface area. The area of the palmar surface of the hand was measured to test the accuracy of this estimate and then compared with the body surface area as calculated by formulas in common use. This study also sought to determine the natural history of the growth of the hand to permit development of a readily available, bedside means of estimating hand area and body surface area. Bilateral hand tracings were obtained from 800 volunteers ranging in age from 2 to 89 years. The area of each tracing was determined using an integrating planimeter. The height and weight of each individual were measured, and his/her body surface area was calculated. The palmar hand's percentage of body surface area was determined by calculating the quotient for hand area divided by body surface area. Additionally, the width of the hand was measured from the ulnar aspect at the palmar digital crease of the small finger to the point where the thumb rested against the base of the index finger. The length of the hand was measured from the middle of the interstylon to the tip of the middle finger. These two figures were multiplied together to obtain a product which approximated the area of the hand. Based on the most commonly used DuBois formula for calculating body surface area, the area of palmar surface of the hand corresponds to 0.78 +/- 0.08 percent of the body surface area in adults. The percentage varies somewhat with age and reaches a maximum of 0.87 +/- 0.06 percent in young children. Multiplying the length of the hand by its width overestimates the area of the hand as determined by planimetry by only 2 percent. A patient's own hand may be used as a complementary, readily available template for estimation of burn area or other areas of disease or injury. In adults, the area of tracing of the outline of the hand is 0.78 percent of the body surface area, whereas in children, this number tends to be slightly higher. In the emergency room or on the wards, a simple product of length multiplied by width of the hand will closely approximate the area as determined by planimetry. This method allows a more accurate determination of the area of the palmar surface of the hand than the 1 percent estimate, which may lead to an overestimation of the size of a burn wound in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.