A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.
Epilepsy is a brain disorder disease that affects people’s quality of life. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. This paper provides a computer-aided diagnosis system (CADS) for the automatic diagnosis of epileptic seizures in EEG signals. The proposed method consists of three steps, including preprocessing, feature extraction, and classification. In order to perform the simulations, the Bonn and Freiburg datasets are used. Firstly, we used a band-pass filter with 0.5–40 Hz cut-off frequency for removal artifacts of the EEG datasets. Tunable-Q Wavelet Transform (TQWT) is used for EEG signal decomposition. In the second step, various linear and nonlinear features are extracted from TQWT sub-bands. In this step, various statistical, frequency, and nonlinear features are extracted from the sub-bands. The nonlinear features used are based on fractal dimensions (FDs) and entropy theories. In the classification step, different approaches based on conventional machine learning (ML) and deep learning (DL) are discussed. In this step, a CNN–RNN-based DL method with the number of layers proposed is applied. The extracted features have been fed to the input of the proposed CNN–RNN model, and satisfactory results have been reported. In the classification step, the K-fold cross-validation with k = 10 is employed to demonstrate the effectiveness of the proposed CNN–RNN classification procedure. The results revealed that the proposed CNN–RNN method for Bonn and Freiburg datasets achieved an accuracy of 99.71% and 99.13%, respectively.
In this article, energy-based feedback control is introduced merely as an approach to suppress chaos. We have also shown in this study that an energy-based feedback controller is capable of changing a chaotic dynamic to other chaotic dynamics. In other words, energy feedback can also be used to convert chaos dynamics to another chaos dynamics, and the use of energy feedback should not be limited to suppress chaos. The importance of the issue lies in relating some practical applications of chaos to chaos control. In this short study, we have shown that an energy feedback control can be combined with a fuzzy self-regulating gain system. A short study has been done on Chua's circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.