Evaluation of fitness differences between herbicide-resistant and susceptible weed biotypes, allows a better prediction of further dispersal of herbicide-resistance populations and the design of a management strategy in order to achieve a mitigation of the problem in the absence of herbicide. In this study, an evaluation of germination and seedling emergence characteristics of three rigid ryegrass biotypes (one susceptible and two resistant populations with different mutations, namely Ile 1781 Leu and Ile 2041 Asn) and of competition between this weed and wheat using replacement series experiments was conducted. The results showed that when seeds were on the soil surface (0 cm) to depth of 2 cm and again for the depth of 6 cm, there were not any significant differences between the biotypes regarding seed germination percentage. On the contrary, when seeds were sown in 2-4 cm depth, R-1781 consistently displayed lower emergence than the S and R-2041 biotypes. Moreover, when seeds were sown at 8 cm depth, final proportions of emerged seedlings were similar for R-2041 and R-1781, while both populations had significantly higher emergence than the S population. The competitive ability of the three biotypes was similar, as determined by a replacement series experiment with wheat. Our results under competitive conditions revealed that Triticum aestivum was more competitive than Lolium rigidum. Overall, there was no apparent fitness penalty associated to ACCase-inhibitor resistance, while different mutations may impose different competitive ability and therefore require case-specific management strategies.
Amino acid substitutions that confer herbicide-resistance may cause fitness costs in mutant plants at unfavorable levels in contrast to wild-species. The fitness costs in three Lolium rigidum populations (AH3 (Ile-2041-Asn) and BO2 (Ile-1781-Leu) as resistant (R) to clodinafop-propargyl, an ACCase (acetyl-CoAcarboxylase) inhibitor, carrying the mutations 1781 and 2041, respectively, and HF as susceptible (S)) were studied during 2014 and 2016. The germination rates and percentages of the three L. rigidum populations, and competition between them and Triticum aestivum using substitution series experiments were assessed. The BO2 and AH3 populations showed resistance to clodinafop-propargyl due to mutations in their ACCase genes. The germination rate for L. rigidum decreased as the sowing depth increased, with the lowest germination rate being found at 8 cm. AH3 and HF populations presented higher seed germination under water and NaCl salinity stress, but no fitness cost variations were observed among these R populations under optimal growth conditions. Diverse germination responses to light conditions were observed between the S and R L. rigidum populations. The highest germination percentage was observed in the HF population at the two-week lighting + two-week darkness regime. The comparison of relative yield total and relative crowding coefficient showed that T. aestivum was more competitive than L. rigidum. However, among ACCase-resistant L. rigidum populations, AH3 population was the most competitive presenting no fitness costs. This R population was more competitive than the S (HF) one under competitive conditions. These results show that fitness costs in the R L. rigidum populations vary according to the specific mutation at the ACCase gene that confers resistance to clodinafop-propargyl. In conclusion, mutations occurring at the 2041 position in the ACCase gene caused fitness costs, but those occurring at the 1781 position did not generate fitness costs for L. rigidum. Therefore, non-chemical methods should be considered unfavorable for resistant populations of this species.
This article was published in an CASRP journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the authors institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copied, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding CASRP΄s archiving and manuscript policies encouraged to visit: http://www.casrp.co.uk/journals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.