The popularity and remarkable attractiveness of cryptocurrencies, especially Bitcoin, absorb countless enthusiasts every day. Although Blockchain technology prevents fraudulent behavior, it cannot detect fraud on its own. There are always unimaginable ways to commit fraud, and the need to use anomaly detection methods to identify abnormal and fraudulent behaviors has become a necessity. The main purpose of this study is to use the Blockchain technology of symmetry and asymmetry in computer and engineering science to present a new method for detecting anomalies in Bitcoin with more appropriate efficiency. In this study, a collective anomaly approach was used. Instead of detecting the anomaly of individual addresses and wallets, the anomaly of users was examined. In addition to using the collective anomaly detection method, the trimmed_Kmeans algorithm was used for clustering. The results of this study show the anomalies are more visible among users who had multiple wallets. The proposed method revealed 14 users who had committed fraud, including 26 addresses in 9 cases, whereas previous works detected a maximum of 7 addresses in 5 cases of fraud. The suggested approach, in addition to reducing the processing overhead for extracting features, detect more abnormal users and anomaly behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.