In this paper, we suggest and analysis a viscosity iterative algorithm for finding a common element of the set of solution of a mixed equilibrium problem and the set the of solutions of a variational inequality and all common fixed points of a nonexpansive semigroup. This algorithm strongly converges to an element which solves an optimization problem system. Finally, some examples and numerical results are also given.
In this paper, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem system (GEPS) and the set of fixed points of a nonexpansive semigroup. Furthermore, we present some numerical examples (by using MATLAB software) to guarantee the main result of this paper.
Abstract.We suggest an explicit viscosity iterative algorithm for finding a common element of the set of solutions for an general equilibrium problem system (GEPS) involving a bifunction defined on a closed, convex subset and the set of fixed points of a nonexpansive semigroup on another one in Hilbert's spaces. Furthermore, we present some numerical examples(by using MATLAB software) to guarantee the main result of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.