We have studied the topology of the energy landscape of a spin-glass model and the effect of frustration on it by looking at the connectivity and disconnectivity graphs of the inherent structure. The connectivity network shows the adjacency of energy minima whereas the disconnectivity network tells us about the heights of the energy barriers. Both graphs are constructed by the exact enumeration of a two-dimensional square lattice of a frustrated spin glass with nearest-neighbor interactions up to the size of 27 spins. The enumeration of the energy-landscape minima as well as the analytical mean-field approximation show that these minima have a Gaussian distribution, and the connectivity graph has a log-Weibull degree distribution of shape κ = 8.22 and scale λ = 4.84.To study the effect of frustration on these results, we introduce an unfrustrated spin-glass model and demonstrate that the degree distribution of its connectivity graph shows a power-law behavior with the −3.46 exponent, which is similar to the behavior of proteins and Lennard-Jones clusters in its power-law form.
We studied formation of vortex with four-fold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observed five other phases in the system: homogeneous gaseous phase, band structures, moving clumps, moving clusters and vibrating rings. All six phases emerge from controlling strength of noise and contribution of repulsion and alignment interactions. We studied shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. Finally, we derived hydrodynamical equations for our model and compared them with the results of both computer simulations and Quincke rotors. A good agreement between the three is observed.
Several different enzymes display an apparent diffusion coefficient that increases with the concentration of their substrate. Moreover, their motion becomes directed in substrate gradients. Currently, there are several competing models for these transport dynamics. Here, we use mathematical modeling and numerical simulations to analyze whether the enzymatic reactions can generate a significant feedback from enzyme transport onto the substrate profile. We find that this feedback can generate spontaneous spatial patterns in the enzyme distribution, with just a single-step catalytic reaction. However, patterns are formed only for a subclass of transport models. For such models, nonspecific repulsive interactions between the enzyme and the substrate, or attractive interactions between the enzyme and the product, cause the enzyme to accumulate in regions of low substrate concentration. Reactions then amplify local substrate and product fluctuations, causing enzymes to further accumulate where substrate is low. Experimental analysis of this pattern formation process could discriminate between different transport models.
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting selfpropelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatio-temporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.