In this study, the performance of triangular added damping and stiffness (TADAS) dampers combined with curved dampers (Curved-TADAS damper) is evaluated in moment resisting steel frame (MRSF). These dampers are passive and install in the beam-column connection region. Variable parameters of this study involve the width of curved damper (50, 75 and 100 mm), the thickness of TADAS damper (5 and 10 mm) and the number of TADAS damper (2, 4 and 6). Evaluation of MRSF was performed using the finite element method by ABAQUS. Two different experimental studies were used in order to evaluate the validity of the numerical simulation method and a suitable agreement was obtained. The response of the frames in different modes was compared with parameters such as energy dissipation, strength, stiffness, hysteresis damping ratio, and ductility. In the end, the performance of the proposed dampers was compared with the curved damper. The results show that Curved-TADAS dampers reduce the structural responses to seismic loading and prevent structural failure due to the dissipation of a large amount of seismic input energy. The function of these systems is such that, by performing special deformations, they absorb and deplete a large amount of earthquake input energy of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.