PM 10 prediction has attracted special legislative and scientific attention due to its harmful effects on human health. Statistical techniques have the potential for high-accuracy PM 10 prediction and accordingly, previous studies on statistical methods for temporal, spatial and spatio-temporal prediction of PM 10 are reviewed and discussed in this paper. A review of previous studies demonstrates that Support Vector Machines, Artificial Neural Networks and hybrid techniques show promise for suitable temporal PM 10 prediction. A review of the spatial predictions of PM 10 shows that the LUR (Land Use Regression) approach has been successfully utilized for spatial prediction of PM 10 in urban areas. Of the six introduced approaches for spatio-temporal prediction of PM 10 , only one approach is suitable for high-resolved prediction (Spatial resolution < 100 m; Temporal resolution ď 24 h). In this approach, based upon the LUR modeling method, short-term dynamic input variables are employed as explanatory variables alongside typical non-dynamic input variables in a non-linear modeling procedure.
Surface urban heat island (SUHI) is defined as the elevated land surface temperature (LST) in urban area in comparison with non-urban areas, and it can influence the energy consumption, comfort and health of urban residents. In this study, the existence of daytime SUHI, in Cairo and its new towns during the summer, is investigated using three different approaches; (1) utilization of pre-urbanization observations as LST references; (2) utilization of rural observations as LST references (urban-rural difference); and (3) utilization of the SIUHI (Surface Intra Urban Heat Island) approach. A time series of Landsat TM & ETM+ data (46 images) from 1984 to 2015 was employed in this study for daytime LST calculation during summer. Different statistical hypothesis tests were utilized for the evaluation of LST and SUHI in the case studies. The results demonstrated that there is no significant LST difference between the urban areas studied, and their corresponding built-up areas. In addition, daytime LST in new towns during the summer is 2 K warmer than in Cairo. Utilization of a pre-urbanization observations approach, alongside an evaluation of the long-term trend, demonstrated that there is no daytime SUHI during the summer in the study areas, and construction activities in the study areas do not result in cooling or warming effects. Utilization of the rural observations approach showed that LST is lower in Cairo than its surrounding areas. This demonstrates why the selection of suitable rural references in SUHI studies is an important and complicated task, and how this approach may lead to misinterpretation in desert city areas with significant landscape and surface difference with their most surrounding areas (e.g., Cairo). Results showed that, although SIUHI technique can be representative for the changes of variance of LST in urban areas, it is not able to identify the changes of mean LST in urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.