Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat.
Antihistaminics are widely used for various indications during microbial infection. Hence, this paper investigates the antimicrobial activities of 10 antihistaminics belonging to both old and new generations using multiresistant Gram-positive and Gram-negative clinical isolates. The bacteriostatic activity of antihistaminics was investigated by determining their MIC both by broth and agar dilution techniques against 29 bacterial strains. Azelastine, cyproheptadine, mequitazine and promethazine were the most active among the tested drugs. Diphenhydramine and cetirizine possessed weaker activity whereas doxylamine, fexofenadine and loratadine were inactive even at the highest tested concentration (1 mg/ml). The MIC of meclozine could not be determined as it precipitated with the used culture media. The MBC values of antihistaminics were almost identical to the corresponding MIC values. The bactericidal activity of antihistaminics was also studied by the viable count technique in sterile saline solution. Evident killing effects were exerted by mequitazine, meclozine, azelastine and cyproheptadine. Moreover, the dynamics of bactericidal activity of azelastine were studied by the viable count technique in nutrient broth. This activity was found to be concentration-dependant. This effect was reduced on increasing the inoculum size while it was increased on raising the pH. The post-antimicrobial effect of 100 g/ml azelastine was also determined and reached up to 3.36 h.
Introduction: Pseudomonas aeruginosa is one of the most virulent nosocomial pathogens worldwide. Quorum sensing (QS) regulates the production of pathogenic virulence factors and biofilm formation in P. aeruginosa. The four genes lasR, lasI, rhlR,and rhlI were found to regulate this QS system. In this study, we aimed to assess the correlation between these four genes and QS-dependent virulence factors and to detect the inhibitory effect of clove oil on QS. Methodology: Fifty P. aeruginosa clinical isolates were collected. Susceptibility to different antibiotics was tested. Virulence factors including biofilm formation, pyocyanin production, and twitching motility were phenotypically detected. QS genes were amplified by polymerase chain reaction (PCR), and one strain subsequently underwent sequencing. The inhibitory effect of clove oil on virulence factors was also tested. Results: A positive correlation was found between biofilm formation and the presence of lasR and rhlI genes. Twitching motility was positively correlated with the presence of lasR, lasI, and rhlI genes. On the other hand, no correlation was found between pyocyanin production and any of the studied genes. Only one isolate amplified all the tested QS gene primers, but it did not express any of the tested virulence factors phenotypically. Sequence analyses of this isolate showed that the four genes had point mutations. Conclusions: Results emphasize the importance of QS in P. aeruginosa virulence; however, QS-deficient clinical isolates occur and are still capable of causing clinical infections in humans. Also, clove oil has an obvious inhibitory effect on QS, which should be clinically exploited.
Several antihistaminics possess antibacterial activity against a broad spectrum of bacteria. However, the exact mechanism of such activity was unclear. Hence, the aim of this study is to investigate their mechanism of antibacterial activity especially their effect upon the permeability of the bacterial cytoplasmic membrane.The effects of azelastine, cetirizine, cyproheptadine and diphenhydramine were studied using Gram-positive Furthermore, the effect of pretreating certain isolates for both short and long periods with selected antihistaminics was followed by the viable count technique. Increased vulnerability towards further exposure to azelastine was observed in cells pretreated with azelastine for 2 days and those pretreated with azelastine or cetrizine for 30 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.