While the majority of cochlear implant recipients benefit from the device, it remains difficult to estimate the degree of benefit for a specific patient prior to implantation. Using data from 2,735 cochlear-implant recipients from across three clinics, the largest retrospective study of cochlear-implant outcomes to date, we investigate the association between 21 preoperative factors and speech recognition approximately one year after implantation and explore the consistency of their effects across the three constituent datasets. We provide evidence of 17 statistically significant associations, in either univariate or multivariate analysis, including confirmation of associations for several predictive factors, which have only been examined in prior smaller studies. Despite the large sample size, a multivariate analysis shows that the variance explained by our models remains modest across the datasets ([Formula: see text]–0.21). Finally, we report a novel statistical interaction indicating that the duration of deafness in the implanted ear has a stronger impact on hearing outcome when considered relative to a candidate’s age. Our multicenter study highlights several real-world complexities that impact the clinical translation of predictive factors for cochlear implantation outcome. We suggest several directions to overcome these challenges and further improve our ability to model patient outcomes with increased accuracy.
While cochlear implants have helped hundreds of thousands of individuals, it remains difficult to predict the extent to which an individual’s hearing will benefit from implantation. Several publications indicate that machine learning may improve predictive accuracy of cochlear implant outcomes compared to classical statistical methods. However, existing studies are limited in terms of model validation and evaluating factors like sample size on predictive performance. We conduct a thorough examination of machine learning approaches to predict word recognition scores (WRS) measured approximately 12 months after implantation in adults with post-lingual hearing loss. This is the largest retrospective study of cochlear implant outcomes to date, evaluating 2,489 cochlear implant recipients from three clinics. We demonstrate that while machine learning models significantly outperform linear models in prediction of WRS, their overall accuracy remains limited (mean absolute error: 17.9-21.8). The models are robust across clinical cohorts, with predictive error increasing by at most 16% when evaluated on a clinic excluded from the training set. We show that predictive improvement is unlikely to be improved by increasing sample size alone, with doubling of sample size estimated to only increasing performance by 3% on the combined dataset. Finally, we demonstrate how the current models could support clinical decision making, highlighting that subsets of individuals can be identified that have a 94% chance of improving WRS by at least 10% points after implantation, which is likely to be clinically meaningful. We discuss several implications of this analysis, focusing on the need to improve and standardize data collection.
Some mining companies are investigating the use of road trains to increase productivity in underground mines. Road trains require dedicated passing bays in declines. The spacing of these passing bays can have a significant impact on haulage productivity. This technical note describes the use of simulation to find the optimal spacing. If the distance between passing bays is sufficiently small then descending trains can be interleaved with ascending trains, which increases productivity. If the spacing is too small, however, productivity can decrease as descending trains wait in passing bays for ascending trains. For a real mine the spacing should be less than the theoretical critical distance to cope with variations in loading and unloading durations.
Soaring healthcare costs and the growing demand for services require us to use healthcare resources more efficiently. Randomness in resource requirements makes the care delivery process less efficient. Our aim is to reduce the uncertainty in patients' resource requirements, and we achieve that objective by classifying patients into similar resource user groups. In this article, we develop a two-stage classification model to classify patients into lower variability resource user groups. There are various statistical tools for classifying patients into lower variability resource user groups. However, classification and regression tree (CART) analysis is a more suitable method for analyzing healthcare data because it has some distinct features. For example, it can handle the interaction between predictor variables naturally, it is non-parametric in nature, and it is relatively insensitive to the curse of dimensionality. We found that the CART analysis is also useful for determining the patient attributes that can explain the variability in resource requirements. Furthermore, we observed that some of the covariates, such as the principal prescribed procedure code, the admission point, and the operating surgeon, were able to explain up to 53.43% of the variability in patients' lengths of stay (LoS). Reducing the uncertainty in patients' LoS predictions helps us manage patient flow efficiently and subsequently obtain a better throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.