The USAEME with GF-AAS procedure was shown to be an efficient, rapid, inexpensive and eco-friendly method for the determination of lead, chromium and cadmium in herbal medicines. Application of the USAEME method leads to an increased extraction efficiency with satisfactory precision in a short time using an extraction solvent volume at the microlitre level.
A simple, rapid, and highly sensitive method for simultaneous analysis of anti-inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid-phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1-30 ng/mL and detection limits were 0.07-0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid-phase microextraction and ion mobility spectrometry system for the selective clean-up and quantification of trace amounts of anti-inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano-structure morphology of the polypyrrole film.
A simple and sensitive headspace (HS) solid phase microextraction (SPME) coupled with ion mobility spectrometry (IMS) method is presented for analysis of urea in dialysis human serum samples. A dodecylbenzenesulfonate-doped polypyrrole coating was used as a fiber for SPME. The HS-SPME-IMS method exhibits good repeatability (relative standard deviation of 3% or less), simplicity, and good sensitivity. The influence of various analytical parameters such as pH, ionic strength, extraction time and temperature was investigated and the parameters were optimized. The calibration graph was linear in the range from 5 to 50 μg mL(-1), and the detection limit was 2 μg mL(-1). The method was applied successfully for determination of urea in human serum and with acceptable recovery (more than 98%). Finally, a standard addition calibration method was applied to the HS-SPME-IMS method for the analysis of human serum samples before and at the end of dialysis. The proposed method appears to be suitable for the analysis of urea in serum samples as it is not time-consuming and requires only small quantities of the sample without any derivatization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.