This study aimed at creating genetic variability by induced mutagenesis in farmers' preferred sorghum variety (ICSV1049) to breed mutant lines for water deficit tolerance. Sorghum seeds were irradiated by gamma rays and sown as one panicle-to-one progeny method. Putative lines M5 (143) and parent were screened under water deficit stress. Data analysis showed that leaf senescence (LS) was positively correlated to relative water content (RWC), panicle weight (PaWt), grain weight (GrWt) and chlorophyll content 13 days after water deficit application (SPAD II). Semi-dwarf trait (SDwf) with plants height (Ht)<100 cm were observed among 3.38% of lines, while 13.5% exhibited early maturity (<90 days). The leaves of 87.3% of lines were semi-erectile. Averaged overall lines, mutation has reduced date to flowering (DaFl), date to grain maturity (DaMa) and LS at 9.2, 4.1 and 8.1% compared to the parent, respectively. However, SPAD I (chlorophyll content first day of water deficit application), SPAD II, RWC, GrWt, PaWt and Ht were increased at 30.8, 40.5, 36.5, 22.2, 37.5 and 9.3%, respectively. Based on the results, seven mutant lines exhibited tolerance to water deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.