The present study was designed to investigate the effects of dietary apple cider vinegar (ACV) on digestive enzyme activity and growth performance as well as immune responses and antibacterial activity of skin mucus in green terror (Andinoacara rivulatus). Fish were fed diets supplemented with 0%, 1%, 2% and 4% of ACV (40.830 ppm acetic acid concentration) for 63 days. The final weight and weight gain values were observed to be significantly higher in fish fed with 2% of ACV compared to the control group (p < .05). ACV inclusion in the diets had significant effects on SGR (%) and FCR values (p > .05). ACV treatment resulted in a significant increase in the intestinal protease, α‐amylase, lipase and alkaline phosphatase activities compared to control (p < .05). The activities of digestive enzymes in fish fed with 2% and 4% of ACV diets were significantly higher than the other groups (p < .05). The total protein content, alternative haemolytic complement, alkaline phosphatase, total immunoglobulins and lysozyme activities of skin mucus increased significantly in fish fed with ACV diets (p < .05). In conclusion, administration of ACV enhanced digestive enzyme activity, growth performance, immune responses and the immune properties of skin mucus, and it can be used as a natural growth promoter and immunostimulant in green terror culture.
A 63‐day experiment was done to study the effects of four levels (5, 10, 20 and 50 g/kg) of encapsulated organic salts (Na‐acetate, Na‐butyrate, Na‐lactate and Na‐propionate) on the growth indices and haemato‐immunological responses of crayfish Astacus leptodactylus leptodactylus (4.38 ± 0.08 g). Crayfish were distributed at 51 1,000‐L tanks (17 treatments at triplicate). The highest values of final weight (27.86 g), specific growth rate (2.94% body weight per day) and survival rate (96%) were observed in the crayfish fed the 20 g/kg of encapsulated Na‐propionate diet (p < .05). The highest activities of phenoloxidase (7.4 U/min), superoxide dismutase (7.80 U/min) and lysozyme (9.40 U/min) were observed in the gut of crayfish fed the 20 g/kg of encapsulated Na‐propionate diet (p < .05), as well as the highest activities of alkaline protease (10.70 U/mg), lipase (9.10 U/mg), amylase (9.60 U/mg) and the lactobacillus count (p < .05). Broken line regression model of SGR and phenoloxidase activity suggested that the optimum dietary levels of encapsulated Na‐acetate, Na‐butyrate, Na‐lactate and Na‐propionate could be 30.7, 31.8, 31.4 and 33.5 g/kg, respectively, in crayfish reared in culture conditions.
Hypocretins/Orexins neuropeptides are known to regulate numerous physiological functions, such as energy homeostasis, food intake, sleep/wake cycle, arousal and wakefulness, in vertebrates. Previous studies on mice have revealed an intriguing orexins/endocannabinoids (ECs) signaling interaction at both structural and functional levels, with OX-A behaving as a strong enhancer of 2-arachydonoyl-glycerol (2-AG) biosynthesis. In this study, we describe, for the first time in the brain of zebrafish, the anatomical distribution and co-expression of orexin (OX-2R) and endocannabinoid (CB1R) receptors, suggesting a functional interaction. The immunohistochemical colocalization of these receptors by confocal imaging in the dorsal and ventral telencephalon, suprachiasmatic nucleus (SC), thalamus, hypothalamus, preoptic area (PO) and cerebellum, is reported. Moreover, biochemical quantification of 2-AG levels by LC-MS supports the occurrence of OX-A-induced 2-AG biosynthesis in the zebrafish brain after 3 h of OX-A intraperitoneal (i.p.; 3 pmol/g) or intracerebroventricular (i.c.v.; 0.3 pmol/g) injection. This effect is likely mediated by OX-2R as it is counteracted by i.p./i.c.v administration of OX-2R antagonist (SB334867, 10 pmol/g). This study provides compelling morphological and functional evidence of an OX-2R/CB1R signaling interaction in the brain of adult zebrafish, suggesting the use of this well-established vertebrate animal model for the study of complex and phylogenetically conserved physiological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.