The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward back propagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.