Infrastructure projects, which include a wide range of construction and energy projects, play an important role amid other industrial projects. In this regard, petroleum refinery industry projects are one of the leading manufacturing industries in the world and have the most notable position in the energy industry projects. Developing petroleum refinery industry projects are one of the principal contributors to economic and social development. In spite of the necessity of country development, this development has to be sustained at least in economic, social, and environmental matters (pillars of sustainable development) particularly after the Brundtland Commission Report in 1987. In this paper, it is proposed to simplify the evaluation process of life cycle sustainability versus life cycle stages. Thus, an indicator-based approach is used in order to evaluate the sustainability along different stages of petroleum refinery industry projects. Also, a multi-level hierarchy of criteria decision making is defined by using Analytic Hierarchy Process (AHP), combined with a fuzzy set theory to enhance the reliability of the results. The outputs of this paper will be helpful for decision makers in many ways such as the most important stage with regard to sustainable development matters; or the most important pillars (economic, social, and environmental) of sustainability in each life cycle stage. Also, other valuable outputs based on the results are consequently discussed.
Fossil fuels as the primary energy source create career opportunities, provide industries with vital raw material and energy resources, have harmful emissions to the environment and are also related to finite natural resources. They rely on them as the main source of energy supply is unsustainable. Sustainability assessment tools may be useful in developing a more sustainable scenario. However, the resiliency of nature is not taken into account in this linear assessment. The detrimental effect of these fuels on the environment during their life cycle would suggest transitioning from cradle-to-grave to the cradle-to-cradle lifecycle viewpoint. This study implements the Circular Economic (CE) in fossil fuel development to minimize the unsustainable effects and ensure the environment's resiliency. In this context, three different fossil fuels are assessed based on the CE model's proposed lifecycle phases to find out the most sustainable fossil fuel option. A case study is carried out in an industrial location with high-level decision-makers. CE criteria are evaluated based on the E-SWARA method to ensure the assessment's reliability at this critical step. Next, a novel MCDM method, MARCOS, is applied to this study. Based on the results, gas is the most sustainable energy generation plant in the intended region.
Blast-resistant buildings are mainly used to protect main instruments, controllers, expensive equipment, and people from explosion waves. Oil and gas industry projects almost always include blast-resistant buildings. For instance, based on a hazard identification (HAZID) and hazard and operability (HAZOP) analysis of a plant, control rooms and substations are sometimes designed to withstand an external free air explosion that generates blast over pressure. In this regard, a building façade is considered to be the first barrier of resistance against explosion waves, and therefore a building façade has an important role in reducing a building’s vulnerability and human casualties. In case of a lack of enough resistance, explosion waves enter a building and bring about irreparable damage to the building. Consequently, it seems important to study and evaluate various materials used in a façade against the consequences of an explosion. This study tried to make a comparison between different types of building facades against explosion waves. The materials used in a building play a key role in the vulnerability of a building. In this research, a literature review and the fuzzy Delphi method were applied to find the most critical criteria, and then a fuzzy evaluation based on the distance from the average solution (EDAS) was applied in order to assess various materials used in building facades from the perspective of resiliency. A questionnaire was presented to measure effective indices in order to receive experts’ ideas. Finally, by implementing this methodology in a case study, it was concluded that a stone façade performs much better against explosions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.