Reinforcement learning has shown great promise in the training of robot behavior due to the sequential decision making characteristics. However, the required enormous amount of interactive and informative training data provides the major stumbling block for progress. In this study, we focus on accelerating reinforcement learning (RL) training and improving the performance of multi-goal reaching tasks. Specifically, we propose a precision-based continuous curriculum learning (PCCL) method in which the requirements are gradually adjusted during the training process, instead of fixing the parameter in a static schedule. To this end, we explore various continuous curriculum strategies for controlling a training process. This approach is tested using a Universal Robot 5e in both simulation and realworld multi-goal reach experiments. Experimental results support the hypothesis that a static training schedule is suboptimal, and using an appropriate decay function for curriculum learning provides superior results in a faster way.
Nowadays, service robots are appearing more and more in our daily life. For this type of robot, openended object category learning and recognition is necessary since no matter how extensive the training data used for batch learning, the robot might be faced with a new object when operating in a real-world environment. In this article, we present OrthographicNet, a convolutional neural network based model, for 3-D object recognition in open-ended domains. In particular, OrthographicNet generates a global rotation-and scale-invariant representation for a given 3-D object, enabling robots to recognize the same or similar objects seen from different perspectives. Experimental results show that our approach yields significant improvements over the previous state-of-the-art approaches concerning object recognition performance and scalability in open-ended scenarios. Moreover, Orthograph-icNet demonstrates the capability of learning new categories from very few examples on-site. Regarding real-time performance, three real-world demonstrations validate the promising performance of the proposed architecture.
Despite the recent success of state-of-the-art 3D object recognition approaches, service robots still frequently fail to recognize many objects in real human-centric environments. For these robots, object recognition is a challenging task due to the high demand for accurate and real-time response under changing and unpredictable environmental conditions. Most of the recent approaches use either the shape information only and ignore the role of color information or vice versa. Furthermore, they mainly utilize the $$L_n$$ L n Minkowski family functions to measure the similarity of two object views, while there are various distance measures that are applicable to compare two object views. In this paper, we explore the importance of shape information, color constancy, color spaces, and various similarity measures in open-ended 3D object recognition. Toward this goal, we extensively evaluate the performance of object recognition approaches in three different configurations, including color-only, shape-only, and combinations of color and shape, in both offline and online settings. Experimental results concerning scalability, memory usage, and object recognition performance show that all of the combinations of color and shape yield significant improvements over the shape-only and color-only approaches. The underlying reason is that color information is an important feature to distinguish objects that have very similar geometric properties with different colors and vice versa. Moreover, by combining color and shape information, we demonstrate that the robot can learn new object categories from very few training examples in a real-world setting.
Imitation learning (IL) enables robots to acquire skills quickly by transferring expert knowledge, which is widely adopted in reinforcement learning (RL) to initialize exploration. However, in long-horizon motion planning tasks, a challenging problem in deploying IL and RL methods is how to generate and collect massive, broadly distributed data such that these methods can generalize effectively. In this work, we solve this problem using our proposed approach called self-imitation learning by planning (SILP), where demonstration data are collected automatically by planning on the visited states from the current policy. SILP is inspired by the observation that successfully visited states in the early reinforcement learning stage are collision-free nodes in the graph-search based motion planner, so we can plan and relabel robot's own trials as demonstrations for policy learning. Due to these self-generated demonstrations, we relieve the human operator from the laborious data preparation process required by IL and RL methods in solving complex motion planning tasks. The evaluation results show that our SILP method achieves higher success rates and enhances sample efficiency compared to selected baselines, and the policy learned in simulation performs well in a real-world placement task with changing goals and obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.