The first two-dimensional model of a direct propane fuel cell (DPFC) anode was developed and used to investigate materials and operating conditions that resulted in improved DPFC anode performance. The software used, FreeFEM++, is open source and is based on the finite element method. The anode catalyst layer (ACL) was composed of three phases. One solid phase was the platinum catalyst supported on porous carbon (an electron conductor). The second solid phase consisted of solid zirconium phosphate (a proton conductor at 150 °C). The gas phase was located within the pores of the carbon and between the solid particles. Operation at 150 °C allowed the propane gas phase concentration to be in direct contact with the catalyst at the entrance to the ACL. This was an important advantage compared to previous DPFC operations at conditions where aqueous liquids are present (PEMFC at temperatures less than 100 °C and direct propane PAFC). When aqueous liquids surround the catalyst, the propane concentration in contact with the catalyst at the ACL entrance is much smaller because the solubility of propane in aqueous liquids is small. The one-third improvement in the anode overpotential was attributed to this difference. By using interdigitated flow fields with the propane feed in one set of channels and the carbon dioxide product in another set of channels, there was no mixing of the two so that the maximum propane concentration was always present at the entrance to the ACL. The residence time could be chosen, by adjusting the distance between the feed and the product channels (length of land plus channel), to obtain large values of conversion and large values of fuel utilization. It was shown that the larger pressure drops often associated with interdigitated flow fields compared to conventional serpentine flow fields were diminished by increasing the thickness of the catalyst layer. In addition, the thicker catalyst layer permitted the Pt catalyst to be spread over a greater thickness of carbon catalyst support, thereby ensuring better catalyst dispersion and improved catalyst performance.
A rigorous mathematical model for direct propane fuel cells (DPFCs) was developed. Compared to previous models, it provides better values for the current density and the propane concentration at the exit from the anode. This is the first DPFC model to correctly account for proton transport based on the combination of the chemical potential gradient and the electrical potential gradient. The force per unit charge from the chemical potential gradient (concentration gradient) that pushes protons from the anode to the cathode is greater than that from the electrical potential gradient that pushes them in the opposite direction. By including the chemical potential gradient, we learn that the proton concentration gradient is really much different than that predicted using the previous models that neglected the chemical potential gradient. Also inclusion of the chemical potential gradient made this model the first one having an overpotential gradient (calculated from the electrical potential gradient) with the correct slope. That is important because the overpotential is exponentially related to the reaction rate (current density). The model described here provides a relationship between the conditions inside the fuel cell (proton concentration, overpotential) and its performance as measured externally by current density and propane concentration.
An improved mathematical model was used to extend polarization curves for direct propane fuel cells (DPFCs) to larger current densities than could be obtained with any of the previous models. DPFC performance was then evaluated using eleven different variables. The variables related to transport phenomena had little effect on DPFC polarization curves. The variables that had the greatest influence on DPFC polarization curves were all related to reaction rate phenomena. Reaction rate phenomena were dominant over the entire DPFC polarization curve up to 100 mA/cm2, which is a value that approaches the limiting current densities of DPFCs. Previously it was known that DPFCs are much different than hydrogen proton exchange membrane fuel cells (PEMFCs). This is the first work to show the reason for that difference. Reaction rate phenomena are dominant in DPFCs up to the limiting current density. In contrast the dominant phenomenon in hydrogen PEMFCs changes from reaction rate phenomena to proton migration through the electrolyte and to gas diffusion at the cathode as the current density increases up to the limiting current density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.