Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions. Smart homes, which incorporate environmental and wearable medical sensors, actuators, and modern communication and information technologies, can enable continuous and remote monitoring of elderly health and wellbeing at a low cost. Smart homes may allow the elderly to stay in their comfortable home environments instead of expensive and limited healthcare facilities. Healthcare personnel can also keep track of the overall health condition of the elderly in real-time and provide feedback and support from distant facilities. In this paper, we have presented a comprehensive review on the state-of-the-art research and development in smart home based remote healthcare technologies.
The design and implementation of a wearable system to estimate the human reaction time (HRT) to visual stimulus based on two identical wireless motion sensors are described. Each sensor incorporates a motion sensor (gyroscope), a processor and a transceiver operating at the industrial, scientific and medical frequency of 2.45 GHz. Relevant tests to estimate the HRT are performed in two different scenarios including simple and recognition tests for 90 pairs of measurements. The obtained results are compared with a computer-based system to determine the accuracy of the proposed system. The root mean square error, standard deviation error and mean error of the results are 2.88, 6.17 and 0.3 ms for simple test while for recognition test as low as 3.34, 7.83 and 0.35 ms, respectively. The outcomes of the HRT estimation tests confirm HRT can increase by 40–87% due to increased fatigue levels.
This paper addresses the design and implementation of a real-time temperature monitoring system with applications in telemedicine. The system consists of a number of precision wireless thermometers which are conceived and realized to measure the patients' body temperature in hospitals and the intensive care units (ICUs). Each wireless thermometer incorporates an accurate semiconductor temperature sensor, a transceiver operating at 2.4 GHz and a microcontroller that controls the thermometer functionalities. An array of two thermometers are implemented and successfully evaluated in different scenarios, including free-space and in vivo tests. Also, an in-house developed computer software is used in order to visualize the measurements in addition to detecting rapid increase and alerting high body temperature. The agreement between the experimental data and reference temperature values is significant.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.